Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft sheds light on behaviour of cancerous cells

01.07.2005


Thanks to imaging and analysis techniques used by researchers at TU Delft, an international group of scientists has been able to gain more insight into the behaviour of cancerous cells. Delft researchers were the first to establish the changing positions of the ends of chromosomes (telomeres) in cells. It has been discovered that these telomeres behave differently in cancerous cells. An online article on this phenomenon has been published in the important American scientific journal PNAS.



According to Delft researcher Dr. Yuval Garini, the research focused on the structure and organisation of genetic material in the cores of cells, and how this changes in cancerous cells. In these experiments, a specific gene in a cell was disrupted, causing it to become cancerous. The behaviour of the chromosomes in the cell, more specifically the extremities of the chromosomes, called telomeres, were then studied. Previous research had already shown the scientists that, in healthy cells, these telomeres are organised in a well defined structure, which changes during the cell cycle.

The most recent research has shown that this organisation is disrupted in cancerous cells: the telomeres tangle together after cell division. The participating researchers from Delft, but also Canada, Germany en France, have seen how telomeres, and thus chromosomes get tangles in cancerous cells. At each next cell division, these chromosomes break off at random positions. As the open ends of the broken chromosomes are not protected, they look for other chromosomes to join with. The result is undesired combinations of chromosomes.


The role of TU Delft in his research was the numerical mapping and analysis of the changing positions of the telomeres and chromosomes, both in healthy and cancerous cells. To be able to track the telomeres, they were first chemically connected to fluorescent molecules. The labelled telomeres could then be followed with a so-called fluorescence microscope.

The Delft researchers (Dr. Yuval Garini and PhD student Bart Vermolen, from Prof.Dr. Ian Young’s research group) have developed an analysis method to numerically and geometrically record the positions of telomeres during the development of a cell.

By studying the position of the telomeres in the cell core, it may be possible to develop a better way of diagnosing whether or not a cell is cancerous. Also this new insight into the behaviour of telomeres may offer new opportunities for developments in cancer treatment. According to Professor Ian Young , this research project is just one of many at TU Delft in which technological methods are used for medical research. He looks forward to a closer cooperation between the universities of Leiden and Rotterdam in this field.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>