Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Chem-bio Sensors Offer Simultaneous Monitoring

30.06.2005


Researchers at the Georgia Institute of Technology and the Vienna University of Technology have developed a modular system that combines chemical and biological sensing tools capable of providing simultaneous, nano-level resolution information on cell topography and biological activity. The tools integrate micro and nanoscale electrodes into the tips of an atomic force microscope (AFM). A veritable Swiss army knife of sensors, the patented technique is currently being tested to combine other sensing methods to give scientists a more holistic view of cellular activities. The research is published in Vol 44, 2005 of the chemistry journal Angewandte Chemie.



By adding electrodes to the tip of an atomic force microscope, researchers created a tool that can monitor many activities at the same time. "Usually people image topography and then measure the biological activity,” said Christine Kranz, research scientist at Georgia Tech. “But if you think about having biological material, it’s changing with time. So scanning for these sequentially may mean that the structure and activity level of your sample has changed and you’re not looking at the same condition of your sample anymore.”

Using an AFM as the base, researchers added micro and nano-electrodes into the tip. This allows researchers to get biological and chemical information via scanning electrochemical microscopy (SECM) simultaneously with topographical information provided by AFM.


"The problem with conventional AFM imaging is that you get topographical information, but only limited information on the chemical processes occurring at the cell surface,” said Kranz. “With SECM, you can get information on electro-activity, but this information may be convoluted with the topographical information. Also SECM still suffers from limited resolution. We combined the two techniques to give us high resolution topography as well as the chemistry that’s going on at the cell surface.”

Researchers tested their new technique by integrating biosensors for glucose into AFM tips. They imaged, as a synthetic model, glucose transport through track-etched membranes. In another test, a biosensor based on horse radish peroxidase was integrated into the AFM tip. They were able to faithfully measure the chemical activity and image the process to a resolution of 200 nanometers.

The tool promises to be valuable for a wide range of biomedical and biotechnological applications. In an NIH-funded project in collaboration with Emory University, Kranz and Boris Mizaikoff are currently using this technique to study cystic fibrosis and the role errors in regulating adenosine triphosphate (ATP), a chemical involved in transporting energy to cells, might play in the disease.

"The system’s modular design allows it to be adapted for many uses,” said Kranz. Researchers at the Applied Sensors Laboratory at Georgia Tech are testing integrating optical microscopy with the AFM. Another project adds an infrared sensor, while yet another adds a pH sensor. These sensors could also be combined to have three or more sensors on a single instrument because the technology is in the modified AFM tip.

"The technology is very flexible and can be adapted to sense for a wide range of biological systems and processes. Using this technique, we can get a more complete picture of what is going on in a given biological system,” said Kranz.

The research team consisted of Kranz, Mizaikoff, and former postdoc Angelika Kueng from Georgia Tech. Focused ion beam milling was done by Alois Lugstein and Emmerich Bertagnolli from the Vienna University of Technology. Since January 2005, Georgia Tech has established a Focused Ion Beam Center led by Mizaikoff enabling tip fabrication, characterization, and measurements on campus.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu/news-room/release.php?id=588
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>