Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Chem-bio Sensors Offer Simultaneous Monitoring

30.06.2005


Researchers at the Georgia Institute of Technology and the Vienna University of Technology have developed a modular system that combines chemical and biological sensing tools capable of providing simultaneous, nano-level resolution information on cell topography and biological activity. The tools integrate micro and nanoscale electrodes into the tips of an atomic force microscope (AFM). A veritable Swiss army knife of sensors, the patented technique is currently being tested to combine other sensing methods to give scientists a more holistic view of cellular activities. The research is published in Vol 44, 2005 of the chemistry journal Angewandte Chemie.



By adding electrodes to the tip of an atomic force microscope, researchers created a tool that can monitor many activities at the same time. "Usually people image topography and then measure the biological activity,” said Christine Kranz, research scientist at Georgia Tech. “But if you think about having biological material, it’s changing with time. So scanning for these sequentially may mean that the structure and activity level of your sample has changed and you’re not looking at the same condition of your sample anymore.”

Using an AFM as the base, researchers added micro and nano-electrodes into the tip. This allows researchers to get biological and chemical information via scanning electrochemical microscopy (SECM) simultaneously with topographical information provided by AFM.


"The problem with conventional AFM imaging is that you get topographical information, but only limited information on the chemical processes occurring at the cell surface,” said Kranz. “With SECM, you can get information on electro-activity, but this information may be convoluted with the topographical information. Also SECM still suffers from limited resolution. We combined the two techniques to give us high resolution topography as well as the chemistry that’s going on at the cell surface.”

Researchers tested their new technique by integrating biosensors for glucose into AFM tips. They imaged, as a synthetic model, glucose transport through track-etched membranes. In another test, a biosensor based on horse radish peroxidase was integrated into the AFM tip. They were able to faithfully measure the chemical activity and image the process to a resolution of 200 nanometers.

The tool promises to be valuable for a wide range of biomedical and biotechnological applications. In an NIH-funded project in collaboration with Emory University, Kranz and Boris Mizaikoff are currently using this technique to study cystic fibrosis and the role errors in regulating adenosine triphosphate (ATP), a chemical involved in transporting energy to cells, might play in the disease.

"The system’s modular design allows it to be adapted for many uses,” said Kranz. Researchers at the Applied Sensors Laboratory at Georgia Tech are testing integrating optical microscopy with the AFM. Another project adds an infrared sensor, while yet another adds a pH sensor. These sensors could also be combined to have three or more sensors on a single instrument because the technology is in the modified AFM tip.

"The technology is very flexible and can be adapted to sense for a wide range of biological systems and processes. Using this technique, we can get a more complete picture of what is going on in a given biological system,” said Kranz.

The research team consisted of Kranz, Mizaikoff, and former postdoc Angelika Kueng from Georgia Tech. Focused ion beam milling was done by Alois Lugstein and Emmerich Bertagnolli from the Vienna University of Technology. Since January 2005, Georgia Tech has established a Focused Ion Beam Center led by Mizaikoff enabling tip fabrication, characterization, and measurements on campus.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu/news-room/release.php?id=588
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>