Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£150K to find out why you’re a slime ball

28.06.2005


A University of Manchester scientist has been awarded £150,000 to study slime!



But this is no ordinary slime, says biologist Chris Thompson, who believes it could unravel mysteries of evolution that even Darwin couldn’t solve.

Dr Thompson’s curious research was one of only three scientific studies to win this year’s prestigious Lister Institute Research Prize.


The award will allow him to develop his work on slime moulds – microscopic organisms that show remarkable qualities of cooperation and self-sacrifice.

“People might wonder why bother studying slime mould but it could lead to a greater understanding of human behaviour,” explained Dr Thompson, who is based in the Faculty of Life Sciences.

“We know that human behaviour, at least in part, is influenced by our genes, so studying behaviour at a cellular level can improve our understanding of why some genes are associated with cooperation and others with conflict.

“Cooperation is a major driving force in evolution and understanding it is a huge challenge in biology.

“In society, people help each other; they work together within a social structure for a common good even if that means individual effort or sacrifice.

“I’m interested in finding out why people choose to cooperate rather than cheat to simply help themselves.”

This process of cooperation, says Dr Thompson, is beautifully demonstrated at the microscopic level by the slime mould, Dictyostelium.

“To understand behaviour at a molecular level we needed an organism that displays social behaviour and can be manipulated in the lab.”

“Slime moulds usually exist as single-cell amoebae feeding off bacteria in the soil but when their food supply runs out they aggregate to form a ‘fruiting body’ of some 100,000 cells.

“Some cells become spores, while others form a stalk beneath the soil surface. These stalk cells die; they sacrifice themselves so the spores can be dispersed to new feeding grounds.

“My research examines the different genetic makeup of the stalk and spore cells in order to understand this behaviour and discover why some cells would ‘choose’ to die to help others.”

Dr Thompson believes that his research could even lead to a better understanding of the human psyche.

“The rules of engagement we observe in the cells of Dictyostelium are the same at all levels,” he said.

“So, if we can find out which genes prompt cells to cooperate and which trigger conflict we will gain a greater understanding of social behaviour.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/press

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>