Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£150K to find out why you’re a slime ball

28.06.2005


A University of Manchester scientist has been awarded £150,000 to study slime!



But this is no ordinary slime, says biologist Chris Thompson, who believes it could unravel mysteries of evolution that even Darwin couldn’t solve.

Dr Thompson’s curious research was one of only three scientific studies to win this year’s prestigious Lister Institute Research Prize.


The award will allow him to develop his work on slime moulds – microscopic organisms that show remarkable qualities of cooperation and self-sacrifice.

“People might wonder why bother studying slime mould but it could lead to a greater understanding of human behaviour,” explained Dr Thompson, who is based in the Faculty of Life Sciences.

“We know that human behaviour, at least in part, is influenced by our genes, so studying behaviour at a cellular level can improve our understanding of why some genes are associated with cooperation and others with conflict.

“Cooperation is a major driving force in evolution and understanding it is a huge challenge in biology.

“In society, people help each other; they work together within a social structure for a common good even if that means individual effort or sacrifice.

“I’m interested in finding out why people choose to cooperate rather than cheat to simply help themselves.”

This process of cooperation, says Dr Thompson, is beautifully demonstrated at the microscopic level by the slime mould, Dictyostelium.

“To understand behaviour at a molecular level we needed an organism that displays social behaviour and can be manipulated in the lab.”

“Slime moulds usually exist as single-cell amoebae feeding off bacteria in the soil but when their food supply runs out they aggregate to form a ‘fruiting body’ of some 100,000 cells.

“Some cells become spores, while others form a stalk beneath the soil surface. These stalk cells die; they sacrifice themselves so the spores can be dispersed to new feeding grounds.

“My research examines the different genetic makeup of the stalk and spore cells in order to understand this behaviour and discover why some cells would ‘choose’ to die to help others.”

Dr Thompson believes that his research could even lead to a better understanding of the human psyche.

“The rules of engagement we observe in the cells of Dictyostelium are the same at all levels,” he said.

“So, if we can find out which genes prompt cells to cooperate and which trigger conflict we will gain a greater understanding of social behaviour.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/press

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>