Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer drug slows poxvirus in mice

27.06.2005


Mice given a relatively new cancer drug can survive an otherwise lethal dose of vaccinia virus, a relative of smallpox virus, report scientists supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The findings, say the investigators, suggest that Gleevec or similar drugs might be useful in preventing adverse side effects of smallpox vaccine. The classic smallpox vaccine is made from live, weakened vaccinia virus and is not recommended for people with compromised immunity, except in emergency situations where they may have been exposed to smallpox virus.



"This study helps illuminate the cellular machinery used by poxviruses to exit infected cells, and also provides new support for the concept of treating viral infections by targeting specific host cell molecules rather than the viruses themselves," says NIAID Director Anthony S. Fauci, M.D.

The senior author of the paper, published online this week in the journal Nature Medicine, is Daniel Kalman, Ph.D., of Emory University School of Medicine in Atlanta.


Like all viruses, poxviruses co-opt various cellular molecules and processes to enter a cell, replicate and then spread to uninfected cells. Using lab-grown cells, Dr. Kalman and his colleagues identified specific cell proteins vaccinia uses to detach from an infected cell and move toward an uninfected cell. The proteins, members of the Abl-family (pronounced "able") of tyrosine kinases, are well known to cancer investigators because mutation of one family member, Abl, causes a rare form of cancer known as chronic myelogenous leukemia (CML). Gleevec inhibits Abl-family tyrosine kinases and has proved very useful in treating CML.

To learn whether Gleevec could prevent or lessen vaccinia’s ability to spread in a living organism, the researchers treated mice with either saline solution or with Gleevec at a dose equivalent to that given to humans being treated for CML. Next, they exposed the mice to ordinarily lethal amounts of vaccinia. All of the Gleevec-treated mice survived, while 70 percent of the untreated mice died.

This finding, if confirmed in additional animal model studies, suggests that Gleevec might play a role in addressing a public health emergency in the event of a smallpox outbreak, Dr. Kalman says. Specifically, Gleevec might be useful as a preventative against adverse effects of smallpox vaccine, enabling clinicians to use the vaccine even in people who otherwise could not take it. Given for a short period, Gleevec theoretically could hamper the cell-to-cell spread of virus and allow the body’s immune system to mount a successful defense, he explains. Experiments to test whether Gleevec might work against smallpox virus as well as against vaccinia virus are now being planned, Dr. Kalman says. "The approach of fighting disease by targeting drugs to cellular molecules rather than to disease agents themselves may be applicable to a wide variety of pathogenic microorganisms," he says.

Routine vaccinations for smallpox ended in this country in the early 1970s, and the World Health Organization declared smallpox eradicated in 1980. Nevertheless, concern remains that smallpox virus could be unleashed through an act of bioterror. For this reason, scientists are working to better understand the mechanisms of smallpox disease and to develop new and improved smallpox treatments and vaccines.

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>