Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer drug slows poxvirus in mice


Mice given a relatively new cancer drug can survive an otherwise lethal dose of vaccinia virus, a relative of smallpox virus, report scientists supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The findings, say the investigators, suggest that Gleevec or similar drugs might be useful in preventing adverse side effects of smallpox vaccine. The classic smallpox vaccine is made from live, weakened vaccinia virus and is not recommended for people with compromised immunity, except in emergency situations where they may have been exposed to smallpox virus.

"This study helps illuminate the cellular machinery used by poxviruses to exit infected cells, and also provides new support for the concept of treating viral infections by targeting specific host cell molecules rather than the viruses themselves," says NIAID Director Anthony S. Fauci, M.D.

The senior author of the paper, published online this week in the journal Nature Medicine, is Daniel Kalman, Ph.D., of Emory University School of Medicine in Atlanta.

Like all viruses, poxviruses co-opt various cellular molecules and processes to enter a cell, replicate and then spread to uninfected cells. Using lab-grown cells, Dr. Kalman and his colleagues identified specific cell proteins vaccinia uses to detach from an infected cell and move toward an uninfected cell. The proteins, members of the Abl-family (pronounced "able") of tyrosine kinases, are well known to cancer investigators because mutation of one family member, Abl, causes a rare form of cancer known as chronic myelogenous leukemia (CML). Gleevec inhibits Abl-family tyrosine kinases and has proved very useful in treating CML.

To learn whether Gleevec could prevent or lessen vaccinia’s ability to spread in a living organism, the researchers treated mice with either saline solution or with Gleevec at a dose equivalent to that given to humans being treated for CML. Next, they exposed the mice to ordinarily lethal amounts of vaccinia. All of the Gleevec-treated mice survived, while 70 percent of the untreated mice died.

This finding, if confirmed in additional animal model studies, suggests that Gleevec might play a role in addressing a public health emergency in the event of a smallpox outbreak, Dr. Kalman says. Specifically, Gleevec might be useful as a preventative against adverse effects of smallpox vaccine, enabling clinicians to use the vaccine even in people who otherwise could not take it. Given for a short period, Gleevec theoretically could hamper the cell-to-cell spread of virus and allow the body’s immune system to mount a successful defense, he explains. Experiments to test whether Gleevec might work against smallpox virus as well as against vaccinia virus are now being planned, Dr. Kalman says. "The approach of fighting disease by targeting drugs to cellular molecules rather than to disease agents themselves may be applicable to a wide variety of pathogenic microorganisms," he says.

Routine vaccinations for smallpox ended in this country in the early 1970s, and the World Health Organization declared smallpox eradicated in 1980. Nevertheless, concern remains that smallpox virus could be unleashed through an act of bioterror. For this reason, scientists are working to better understand the mechanisms of smallpox disease and to develop new and improved smallpox treatments and vaccines.

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Anne A. Oplinger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>