Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in stem cell research

27.06.2005


According to research published today, investigators from Memorial Sloan-Kettering Cancer Center (MSKCC) have used new techniques in the laboratory that allowed them for the first time to derive unlimited numbers of purified mesenchymal precursor cells from human embryonic stem cells (HESCs). Mesenchymal precursor cells are capable of giving rise to fat, cartilage, bone, and skeletal muscle cells, and may potentially be used for regenerative stem cell therapy in bone, cartilage, or muscle replacement.



The new study, demonstrating the specialized techniques for isolating mesenchymal precursors and generating, purifying, and differentiating those cells in culture, is published online and freely available in the journal PLoS Medicine (Public Library of Science).

Researchers took two lines of completely undifferentiated HESCs and by culturing them in the presence of mouse cells, stimulated them to turn into mesenchymal cells. They then treated these cells with compounds to make them change into specialized bone, cartilage, fat, and muscle cells. According to the study, researchers were able to confirm that these cells were all human cells and that there was no evidence that the cells became cancerous.


Mesenchymal precursors derived from HESCs are different from adult mesenchymal cells because they can efficiently differentiate into skeletal muscle (adult mesenchymal cells do not) in addition to fat, cartilage, and bone. Limited numbers of mesenchymal stem cells have been isolated from adult bone marrow and connective tissues, but harvesting these cells from any of these sources requires invasive procedures and the availability of a suitable donor. The capacity of these cells for long-term proliferation is also poor. In contrast, HESCs could provide an unlimited number of specialized cells.

According to Lorenz Studer, MD, PhD, Head of the Stem Cell and Tumor Biology Laboratory at MSKCC and senior author of the PLoS Medicine study, the high purity, unlimited availability, and multi-potentiality of mesenchymal precursors derived from HESCs will provide the basis for preclinical mouse studies to assess the safety of these cells. The investigators have already taken the next step in this research and are testing the therapeutic potential of embryonic stem cell-derived muscle cells in animal models of muscle disorders.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>