Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme’s newly discovered role may make it target for arthritis treatment

27.06.2005


Scientists have found a new role for a previously identified enzyme that may make it a target for anti-inflammatory treatments.



The finding by researchers at Washington University School of Medicine in St. Louis shows that an enzyme known as cathepsin G regulates the ability of immune cells known as neutrophils to secrete chemicals that attract other immune cells and start the local inflammatory process. Over time, the excessive accumulation of immune cells can lead to tissue and cartilage damage in joints, causing pain and limiting mobility.

"Cathepsin G affects a very early step in this kind of immune response, so inhibiting it has attractive potential for developers of therapeutics," says senior author Christine T.N. Pham, M.D., assistant professor of medicine and a rheumatologist at Barnes-Jewish Hospital.


The study appears in the June 2005 issue of Immunity.

Cathepsin G, which is made by the neutrophils it regulates, is also an attractive target because it belongs to a class of enzymes known as proteases. One principal type of treatment for HIV, the virus that causes AIDS, inhibits proteases, so scientists who try to block cathepsin G’s role in inflammation will already have an extensive body of research results to refer to.

Pham’s lab uses mouse models of arthritis to study the contributions of proteases and other factors to inflammation and arthritis. One such model involves injecting mice with collagen from calf joints.

"The mice make antibodies to that protein because it’s somewhat foreign, but the antibodies have enough cross-reactivity that they will bind to the mouse’s own cartilage and collagen and initiate an inflammation," Pham explains. "This leads to a condition similar to rheumatoid arthritis in the mice."

Three years ago, Pham’s lab published results showing that mice deficient in cathepsin G and other closely related proteases failed to develop arthritis after the injections. This led them to look for the mechanisms by which these proteases regulate inflammation.

Observations made by Pham’s lab and other groups had linked the earliest stages of inflammation in the animal models to neutrophils, which are a kind of immune system firestarter. They arrive first at sites of injury, infection or irritation and secrete chemicals that bring in secondary waves of other immune attack cells.

"The contributions of the neutrophil weren’t always appreciated by scientists," Pham notes. "When patients come to their doctors with arthritis symptoms, the inflammation typically is so well-established that neutrophils are no longer the predominant cell type."

Animal models of inflammation let scientists watch all stages of the inflammatory process and allowed them to see how important neutrophils are to the early stages of that process.

In the new study, Pham and her colleagues showed that cathepsin G is secreted by neutrophils, binds to the cells’ surface membranes, and affects the rearrangement of integrins, an important group of adhesion compounds on the surface of neutrophils.

"The way these integrins rearrange and cluster on the cell surface can send a signal back into the cell that modifies the cell’s behavior, allowing it to do things like secrete inflammatory factors," Pham explains. "The proteases’ ability to affect integrin rearrangement is dependent on their catalytic activity, and that’s an ability that can be taken away from them."

Pham suspects this class of proteases may also be making significant contributions to other autoimmune and inflammatory conditions besides arthritis. She plans further studies to investigate this possibility. Her lab is also working to determine what molecules cathepsin G is sticking to and interacting with on the surfaces of neutrophils and other cells.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>