Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein synthesis can be controlled by light, opening way for new scientific, medical applications

27.06.2005


Proteins are the puzzle-pieces of life, involved in how organisms grow and flourish, but studying their complex biological processes in living systems has been extremely difficult. Now, a team of chemists and neurobiologists led by Timothy Dore at the University of Georgia and Erin M. Schuman at the California Institute of Technology has found a way to use light to regulate protein synthesis in specific locations.



The new method, which uses so-called "caged compounds" that can be turned on with light, could lead to more intricate studies of such important but poorly understood processes, such as protein synthesis in nerve synapses.

The research was published today in the journal Chemistry & Biology. Coauthors on the paper are Schuman, Michael Goard, Girish Aakalu, Carlo Quinonez and Jamii St. Julien, all of the Howard Hughes Medical Institute and Division of Biology at the California Institute of Technology. Lesya Fedoryak from Dore’s lab is also an author of the paper, as is Stephen Poteet, now a medical student at the University of Alabama, Birmingham, who participated in UGA’s Chemistry Summer Undergraduate Research Program in 2001.


The idea of "caged compounds" has been around for some 30 years. In the current application, the team attached a light-sensitive molecule called a chromophore to a bioactive molecule called an effector through a single covalent bond that inactivates the bioactive molecule. Exposing the caged compound to light releases the effector in its active form.

"It’s analogous to placing an animal in a cage to restrict its activity," said Dore, "but the term ’cage’ is really a misnomer because we are not actually placing a molecule inside of a molecule."

The team developed a caged anisomycin compound that can be activated by exposure to ultraviolet light or an infrared laser beam. (Anisomycin is an antibiotic that inhibits protein synthesis.) The new chromophore, called Bhc, is the only one sensitive enough to light that it can mediate light-induced protein synthesis inhibition in a living system.

While previous studies have focused on releasing molecules that activate biological events, little has been done in the area of regulating the inhibition of biological processes.

"Ultimately, we want to understand the role local protein synthesis plays in biological systems such as neurons," said Schuman. "When and where in the neuron is protein synthesis used to bring about changes? How does protein synthesis regulate synaptic strength and axonal outgrowth? These are questions we’d like to answer."

Another example of a process the new method can help clarify involves the role of protein synthesis in the development of an organism. Since stem cells in humans, for example, differentiate into skin, brain and muscle cells, among many others, researchers want to know the controlling mechanisms for how these cells are chosen for their specific roles.

"If we had a way to selectively abolish protein synthesis in subcellular compartments and observe the effects, then we could infer the role of local protein synthesis in development," said Dore.

Generally speaking, there are few research tools available that are location-specific, so the new method adds a potentially powerful tool for scientists. Often, manipulations are carried out on all parts of a sample, but researchers have learned that much of biological function is dependent on the specific location of a particular event.

While the new caged compound and its photoreactive properties may never be used for anything as complex as drug delivery, it may well serve a purpose in studying such areas as memory, brain function and even Alzheimer’s Disease.

"Our technique will enable scientists to conduct experiments aimed at understanding the mechanisms of learning and memory at the molecular and cellular level," said Dore.

The technique could also be used in drug discovery and development, though it is much more likely to be used in advancing knowledge about biological systems.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>