Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein synthesis can be controlled by light, opening way for new scientific, medical applications

27.06.2005


Proteins are the puzzle-pieces of life, involved in how organisms grow and flourish, but studying their complex biological processes in living systems has been extremely difficult. Now, a team of chemists and neurobiologists led by Timothy Dore at the University of Georgia and Erin M. Schuman at the California Institute of Technology has found a way to use light to regulate protein synthesis in specific locations.



The new method, which uses so-called "caged compounds" that can be turned on with light, could lead to more intricate studies of such important but poorly understood processes, such as protein synthesis in nerve synapses.

The research was published today in the journal Chemistry & Biology. Coauthors on the paper are Schuman, Michael Goard, Girish Aakalu, Carlo Quinonez and Jamii St. Julien, all of the Howard Hughes Medical Institute and Division of Biology at the California Institute of Technology. Lesya Fedoryak from Dore’s lab is also an author of the paper, as is Stephen Poteet, now a medical student at the University of Alabama, Birmingham, who participated in UGA’s Chemistry Summer Undergraduate Research Program in 2001.


The idea of "caged compounds" has been around for some 30 years. In the current application, the team attached a light-sensitive molecule called a chromophore to a bioactive molecule called an effector through a single covalent bond that inactivates the bioactive molecule. Exposing the caged compound to light releases the effector in its active form.

"It’s analogous to placing an animal in a cage to restrict its activity," said Dore, "but the term ’cage’ is really a misnomer because we are not actually placing a molecule inside of a molecule."

The team developed a caged anisomycin compound that can be activated by exposure to ultraviolet light or an infrared laser beam. (Anisomycin is an antibiotic that inhibits protein synthesis.) The new chromophore, called Bhc, is the only one sensitive enough to light that it can mediate light-induced protein synthesis inhibition in a living system.

While previous studies have focused on releasing molecules that activate biological events, little has been done in the area of regulating the inhibition of biological processes.

"Ultimately, we want to understand the role local protein synthesis plays in biological systems such as neurons," said Schuman. "When and where in the neuron is protein synthesis used to bring about changes? How does protein synthesis regulate synaptic strength and axonal outgrowth? These are questions we’d like to answer."

Another example of a process the new method can help clarify involves the role of protein synthesis in the development of an organism. Since stem cells in humans, for example, differentiate into skin, brain and muscle cells, among many others, researchers want to know the controlling mechanisms for how these cells are chosen for their specific roles.

"If we had a way to selectively abolish protein synthesis in subcellular compartments and observe the effects, then we could infer the role of local protein synthesis in development," said Dore.

Generally speaking, there are few research tools available that are location-specific, so the new method adds a potentially powerful tool for scientists. Often, manipulations are carried out on all parts of a sample, but researchers have learned that much of biological function is dependent on the specific location of a particular event.

While the new caged compound and its photoreactive properties may never be used for anything as complex as drug delivery, it may well serve a purpose in studying such areas as memory, brain function and even Alzheimer’s Disease.

"Our technique will enable scientists to conduct experiments aimed at understanding the mechanisms of learning and memory at the molecular and cellular level," said Dore.

The technique could also be used in drug discovery and development, though it is much more likely to be used in advancing knowledge about biological systems.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>