Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNC plant researchers discover proteins interact to form hair-trigger protection against invaders


Experimenting with Arabidopsis, a fast-growing cousin of the humble mustard plant, scientists at the University of North Carolina at Chapel Hill got a big surprise while investigating how plants respond to attacks from disease organisms such as bacteria and viruses.

"Contrary to what we thought we’d find, our experiments showed that at least three different proteins work in concert with one another in tug-of war or teeter totter-fashion to keep plant defenses in a state of constant readiness," said Dr. Jeffrey L. Dangl, John N. Couch professor of biology in UNC’s College of Arts and Sciences.

Previously, he and others believed that the proteins -- RAR1, SGT1 and HSP90 -- were required for what is called signal transduction -- relaying like Paul Revere the message that an enemy had arrived, Dangl said. Instead, they are needed to form an even earlier disease surveillance antenna or hair trigger. When disease invaders pull that trigger, infected plants cells quickly commit suicide, often preventing the invader from destroying the entire plant.

The new discovery appears to be a universal mechanism for defense by all plants against not only bacteria and viruses, but also parasitic fungi, insects and worms, he said.

"This work is important because every year, these organisms cause us to lose some 30 percent of our grain, fruit and vegetable crops after all the human, water and soil energy has already gone into producing them," Dangl said. "The hope is that we might be able to manipulate plants’ immune systems to make them more resistant to pathogens using fewer expensive and polluting chemicals."

A report on the findings appears in this week’s edition (June 24) of Science Express, the online, early-release version of the journal Science. Other authors are postdoctoral fellow Dr. Ben F. Holt III and Ph.D. student Youssef Belkhadir, both in biology.

"Plants use resistance proteins to defend themselves against pathogen attack by initiating a defense response," Holt said. "The proteins RAR1, HSP90 and SGT1 were previously thought to work together to help resistance proteins in this function. To our surprise, we found that SGT1 can actually work against, or antagonize, the other two proteins to disable resistance protein function."

The researchers also showed why they antagonized each other, he said. RAR1 and HSP90 can prevent resistance proteins from disappearing, while SGT1 helps them disappear. The result is that the system remains poised for an immediate response to bacteria and other attackers.

"By controlling disappearance of resisting proteins, RAR1, HSP90 and SGT1 control whether or not the plant is about to recognize that it is under pathogen attack," Holt said. "So the emerging story is that RAR1 and HSP90 keep resistance proteins ready to perceive pathogen signals, and SGT1 probably pulls against these two to send resistance proteins to their destruction."

The National Science Foundation supported the research through its Arabidopsis 20-10 Project, which aims to describe the functions of all 28,000 genes in the model plant.

Scientists study Arabidopsis, also known as thale cress or mouse-eared cress, because it is small and can produce five to six generations a year rather than just one or two like most crop plants. That rapid reproduction allows them to study the plant’s genetics faster than they could with other species.

Understanding Arabidopsis completely will teach scientists an enormous amount about all other flowering plants, which are closely related genetically, Dangl said. The new genomics technology, developed by Patrick Brown and David Botstein at Stanford University, has been applied to yeast, fruit flies and humans but not to plants in a large, systematic way. Arabidopsis was the first plant for which scientists succeeded in mapping its entire genetic composition.

Dangl is also with UNC’s Curriculum in Genetics, Department of Microbiology and Immunology and Carolina Center for Genome Sciences.

David Williamson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>