Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Laser Tweezers" Permit Penn Researchers to Describe Microscopic Mechanical Properties of Blood Clots

27.06.2005


A Better Understanding of Clot Physiology Can Lead to More Effective Therapies

For the first time ever, using “laser tweezers,” the mechanical properties of an individual fiber in a blood clot have been determined by researchers at the University of Pennsylvania School of Medicine. Their work, led by John W. Weisel, PhD, Professor of Cell and Developmental Biology at Penn, and published in this week’s early online edition of the Proceedings of the National Academy of Sciences, provides a basis for understanding how the elasticity of the whole clot arises.

Clots are a three-dimensional network of fibrin fibers, stabilized by another protein called factor XIIIa. A blood clot needs to have the right degree of stiffness and plasticity to stem the flow of blood when tissue is damaged, yet be digestible enough by enzymes in the blood so that it does not block blood-flow and cause heart attacks and strokes.



Weisel and colleagues developed a novel way to measure the elasticity of individual fibrin fibers in clots-with and without the factor XIIIa stabilization. They used "laser tweezers"-essentially a laser-beam focused on a microscopic bead ‘handle’ attached to the fibers-to pull in different directions on the fiber.

The investigators found that the fibers, which are long and very thin, bend much more easily than they stretch, suggesting that clots deform in flowing blood or under other stresses primarily by the bending of their fibers.

Weisel likens the structure of a clot composed of fibrin fibers to a microscopic version of a bridge and its many struts. “Knowing the mechanical properties of each strut, an engineer can extrapolate the properties of the entire bridge,” he explains. “To measure the stiffness of a fiber, we used light to apply a tiny force to it and observed it bend in a light microscope, just as an engineer would measure the stiffness of a beam on a macroscopic scale. The mechanical properties of blood clots have been measured for many years, so now we can develop models to relate individual fiber and whole clot properties to understand mechanisms that can yield clots that have vastly different properties.”

He states that these findings have relevance for many areas: materials science, polymer chemistry, biophysics, protein biochemistry, and hematology. “We present the first determination of the microscopic mechanical properties of any polymer of this sort,” says Weisel. “What’s more, our choice of the fibrin clot has particular biological and clinical significance, since fibrin’s mechanical properties are essential for its functions in clotting and also are largely responsible for the pathology of thrombosis that causes most heart attacks and strokes.”

By understanding the microscopic mechanical properties of a clot and how that relates to its observed function within the circulatory system, researchers may be able to make predictions about clot physiology. For example, when clots are not stiff enough, problems with bleeding arise, and when clots are too stiff, there may be problems with thrombosis, which results when clots block the flow of blood.

But how can this knowledge be used to stop bleeding or too much clotting? “Once we understand the origin of the mechanical properties, it will be possible to modulate those properties,” explains Weisel. “If we can change a certain parameter perhaps we can make a clot that’s more or less stiff.” For example, various peptides or proteins, such as antibodies, bind specifically to fibrin, affecting clot structure. The idea would be to use such compounds in people to alter the properties of the clot, so it can be less obstructive and more easily dissolved.

“This paper shows how new technology has made possible a simple but elegant approach to determine the microscopic properties of a fibrin fiber, providing a basis for understanding the origin of clot elasticity, which has been a mystery for more than 50 years,” adds Weisel.

Weisel’s Penn co-authors are Jean-Philippe Collet, Henry Shuman, Robert E. Ledger, and Seungtaek Lee. Funding for the study was provided by the National Institutes of Health, Assistance Publique Hopitaux de Paris, and Parke-Davis. The authors claim no conflicts of interest.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>