Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Laser Tweezers" Permit Penn Researchers to Describe Microscopic Mechanical Properties of Blood Clots

27.06.2005


A Better Understanding of Clot Physiology Can Lead to More Effective Therapies

For the first time ever, using “laser tweezers,” the mechanical properties of an individual fiber in a blood clot have been determined by researchers at the University of Pennsylvania School of Medicine. Their work, led by John W. Weisel, PhD, Professor of Cell and Developmental Biology at Penn, and published in this week’s early online edition of the Proceedings of the National Academy of Sciences, provides a basis for understanding how the elasticity of the whole clot arises.

Clots are a three-dimensional network of fibrin fibers, stabilized by another protein called factor XIIIa. A blood clot needs to have the right degree of stiffness and plasticity to stem the flow of blood when tissue is damaged, yet be digestible enough by enzymes in the blood so that it does not block blood-flow and cause heart attacks and strokes.



Weisel and colleagues developed a novel way to measure the elasticity of individual fibrin fibers in clots-with and without the factor XIIIa stabilization. They used "laser tweezers"-essentially a laser-beam focused on a microscopic bead ‘handle’ attached to the fibers-to pull in different directions on the fiber.

The investigators found that the fibers, which are long and very thin, bend much more easily than they stretch, suggesting that clots deform in flowing blood or under other stresses primarily by the bending of their fibers.

Weisel likens the structure of a clot composed of fibrin fibers to a microscopic version of a bridge and its many struts. “Knowing the mechanical properties of each strut, an engineer can extrapolate the properties of the entire bridge,” he explains. “To measure the stiffness of a fiber, we used light to apply a tiny force to it and observed it bend in a light microscope, just as an engineer would measure the stiffness of a beam on a macroscopic scale. The mechanical properties of blood clots have been measured for many years, so now we can develop models to relate individual fiber and whole clot properties to understand mechanisms that can yield clots that have vastly different properties.”

He states that these findings have relevance for many areas: materials science, polymer chemistry, biophysics, protein biochemistry, and hematology. “We present the first determination of the microscopic mechanical properties of any polymer of this sort,” says Weisel. “What’s more, our choice of the fibrin clot has particular biological and clinical significance, since fibrin’s mechanical properties are essential for its functions in clotting and also are largely responsible for the pathology of thrombosis that causes most heart attacks and strokes.”

By understanding the microscopic mechanical properties of a clot and how that relates to its observed function within the circulatory system, researchers may be able to make predictions about clot physiology. For example, when clots are not stiff enough, problems with bleeding arise, and when clots are too stiff, there may be problems with thrombosis, which results when clots block the flow of blood.

But how can this knowledge be used to stop bleeding or too much clotting? “Once we understand the origin of the mechanical properties, it will be possible to modulate those properties,” explains Weisel. “If we can change a certain parameter perhaps we can make a clot that’s more or less stiff.” For example, various peptides or proteins, such as antibodies, bind specifically to fibrin, affecting clot structure. The idea would be to use such compounds in people to alter the properties of the clot, so it can be less obstructive and more easily dissolved.

“This paper shows how new technology has made possible a simple but elegant approach to determine the microscopic properties of a fibrin fiber, providing a basis for understanding the origin of clot elasticity, which has been a mystery for more than 50 years,” adds Weisel.

Weisel’s Penn co-authors are Jean-Philippe Collet, Henry Shuman, Robert E. Ledger, and Seungtaek Lee. Funding for the study was provided by the National Institutes of Health, Assistance Publique Hopitaux de Paris, and Parke-Davis. The authors claim no conflicts of interest.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>