Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers grow stem cells from human skin

24.06.2005


Researchers at Wake Forest University School of Medicine have successfully isolated stem cells from human skin, expanded them in the laboratory and coaxed them into becoming fat, muscle and bone cells. The study, one of the first studies to show the ability of a single adult stem cell to become multiple tissue types, is reported today in Stem Cells and Development.



"These cells should provide a valuable resource for tissue repair and for organs as well," said Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine and senior researcher on the project. "Because these cells are taken from a patient’s own skin, there would not be problems with organ or tissue rejection."

The research team grew mesenchymal stem cells, a type of stem cell normally found in bone marrow. Using tissue samples from 15 donors who had routine circumcisions, the scientists were able to isolate single stem cells, which they then grew in culture dishes in the laboratory. The scientists used hormones and growth factors to coax the stem cells into becoming fat, muscle and bone cells.


When the differentiated cells were seeded onto three-dimensional molds and implanted in mice, they maintained features consistent with bone, muscle and fat tissue. "Our study shows that stem cells can be obtained from a simple skin biopsy and can be made to become three vital tissues," said Shay Soker, Ph.D., associate professor of surgery at Wake Forest’s School of Medicine, which is part of Wake Forest University Baptist Medical Center. "The bulk of our bodies is made up of fat, muscle and bone."

The promise of stem cells lies in their ability to develop into specialized types of cells and to replicate themselves. Scientists hope to harness the potential of stem cells and use them to replace damaged cells and tissue in conditions such as spinal cord injuries, diabetes, Alzheimer’s disease, stroke and burns.

Most scientists believe that stem cells from human embryos are the most versatile type of stem cell because they have the potential to form any cell or tissue in the body. But they are also exploring the potential of stem cells from adults. In addition to skin, the cells have been identified in bone marrow, the brain and blood from the umbilical cord.

"Compared to bone marrow, a skin biopsy is easy to take, so it offers advantages for clinical use," said Soker. "The cells can be obtained from any small sample of human skin."

Next, Atala’s research team hopes to test the function of the tissue that was created from the stem cells.

"We’ve proved that the cells can be used to engineer tissues consistent with bone, muscle and fat when implanted in animals; now we need to test their function long term," said Soker.

Soker said the cells have potential to be used both in tissue engineering – the science of growing tissues and organs in the laboratory – as well as in cell therapy. For cell therapy, laboratory-grown cells would be injected into the body to replace breast tissue removed by surgery, to fill in the gaps in bone fractures or replace muscle damaged by injury.

"The ability to engineer tissues from a patient’s own cells may overcome two major problems in transplantation medicine: immune rejection and tissue shortage," Atala said.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>