Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar energy stored efficiently

24.06.2005


Pilot solar power-plant delivers promising results



For the first time solar energy has been successfully used in a pilot-plant to create storable energy from a metal ore. In a project funded by the EU, the Paul Scherrer Institute (PSI) with the Swiss Federal Institute of Technology Zurich (ETHZ) together with other research institutes and industrial partners, have reached an important milestone.

A 300-kilowatt pilot installation to create zinc using solar temperatures of over 1200 degrees Celsius successfully came into operation in Israel. The solar-reactor technology is Swiss developed, by the PSI and ETH Zurich, and forms the heart of the plant.


Reducing zinc oxide to zinc is a useful way of chemically storing the sun’s energy in a transportable form, for later use. Zinc can be used in zinc-air-batteries or be used to produce hydrogen by reacting it with water vapor. In both cases the zinc recombines with oxygen and zinc oxide is produced, which can be reused in the solar reactor to produce zinc once more.

"After extensive trials with reactor-prototypes at the PSI solar-oven we have, with our project partners from Sweden, France and Israel, begun to successfully operate a 300-kilowatt pilot-plant at the Weizmann Institute of Science (WIS) in Rehovot near Tel Aviv", explains Christian Wieckert from PSI, Scientific Coordinator of the project.

The aim is sixty-percent efficiency

The first trials of the solar power-plant have used thirty-percent of available solar energy and produced forty-five kilos of zinc an hour, exceeding projected goals. During further tests this summer a higher efficiency is expected. Industrial size plants, for which this is a prototype, can reach efficiency levels of fifty- to sixty-percent. The success of this solar chemistry pilot project opens the way for an efficient thermo-chemical process whereby the sun’s energy can be stored and transported in the form of a chemical fuel. In this process the zinc is combined with coal, coke or carbon biomass which acts as a reactive agent, yet in this reactor only a fifth of the usual amount of agent is used. The sun’s rays are concentrated on this mixture by a system of mirrors and the zinc forms as a gas which is then condensed to a powder.

The research into high-temperature solar-chemistry at PSI and ETHZ combines fundamental physics and chemistry research with solar-chemical reactor technology. The long-term goal is the development of fuels by means of clean, universal and sustainable energy sources. "Solar fuels can be used as an environmentally friendly energy provider and thereby be part of the solution to climate change", says Aldo Steinfeld, Professor from the Institute of Energy Technology at the ETH Zurich and leader of the Solar Chemistry Laboratory at PSI.

Juanita Schlaepfer-Miller | alfa
Further information:
http://www.psi.ch

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>