Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hummingbird flight an evolutionary marvel

23.06.2005


Humans with an appreciation of beauty may have marveled for millennia at the artistry of a darting hummingbird, but scientists announced today that for the first time they can more fully explain how a hummingbird can hover.




Using a powerful technology that was originally developed for engineering, researchers were able to exactly document the movement of air around a hummingbird’s wings and show how its flight is accomplished with the body structure of a bird but some of the aerodynamic tricks of an insect.

This gives it an ability to hover almost indefinitely - an evolutionary advantage in feeding on plant nectar that no other bird has - and an elegance that has charmed people for generations.


The findings were published today in the journal Nature, by scientists from Oregon State University, the University of Portland and George Fox University.

"For decades most researchers thought that hummingbirds had the same flight mechanisms as insects, some of which can hover and dart around in the same way," said Douglas Warrick, an assistant professor of zoology at OSU. "But a hummingbird is a bird, with the physical structure of a bird and all of the related capabilities and limitations. It is not an insect, and it does not fly exactly like an insect."

Flying insects have wings that are almost flat. They gain lift with two mirror-image halfstrokes as the wing moves back and forth in a figure eight pattern, producing nearly equal lift during the downstroke and upstroke. Hummingbird wings move in a similar pattern, and like insects, a hummingbird can invert its wings – turn them upside down during the upstroke – a fair amount more than an average bird. Thus, is has long been assumed that hummingbirds, like insects, were developing equal amounts of lift during both halves of the wing cycle.

But Warrick and his colleagues, Brett Tobalske at the University of Portland and Don Powers at George Fox University, suspected the similarities were misleading.

Bird wings are quite different than those of insects. The bone structure of bird wings, in fact, in some ways is more like that of a human arm that an insect wing. Both birds and humans have a single larger upper bone in their limb called the humerus, and two bones in the lower limb called the radius and ulna. The "fingers" in birds have been welded together into a structure called the manus, onto which most of their feathers are attached.

"We looked at hummingbird flight for 70 years with high speed cameras, but still could only make assumptions and educated guesses about what was happening," Warrick said. "The technology we have now is like a big new telescope showing us parts of the sky we never saw before."

That technology, Warrick said, is called digital particle imaging velocimitry, which has never before been applied to the study of hovering birds. This system atomizes olive oil into microscopic droplets that are so light they move instantly with the slightest movement of air - and a pulsing laser then illuminates the droplets for incredibly short periods of time that can be captured by cameras, and illustrate exactly the swirling movement of air left by a hummingbird’s wings. The research was done with rufous hummingbirds, a migratory species common in Oregon.

"The images we obtained were astonishing," Warrick said.

They showed that because of the limitations of its wing structure, a hummingbird develops only 25 percent of its weight support during the upstroke, while producing the remaining 75 percent during downstroke.

While not the equality of half-strokes that insects exhibit, it’s still very different from other birds, which produce virtually all of their flying lift on the downstroke. And a hummingbird also taps into "leading edge vortices," an aerodynamic mechanism commonly taken advantage of by insects, to provide some of this lift on the downstroke. The tiny swirls of these vortices were clearly illustrated by the new laser images of hummingbird flight.

"What the hummingbird has done is take the body and most of the limitations of the bird, but tweaked it a little and used some of the aerodynamic tricks of an insect to gain a hovering ability," Warrick said. "They make use of what is, in other birds, an aerodynamically wasted upstroke. Coupled with taking advantage of leading edge vortices – which you can only produce to substantial effect if you’re small – and voila, you’re hovering for as long as you want."

Hummingbirds can hover well enough for a sustained period of time to have an evolutionary advantage, Warrick said.

"It may not be the elegant, symmetrical flight of insects, but it works," he said. "It’s good enough. Hovering is expensive, more metabolically expensive than any other type of flight, but as insects have found, nectar from a flower is an even bigger payoff."

"Hummingbirds arrived at the ability to hover from a totally different evolutionary path, and they borrowed a few aerodynamic concepts from insects along the way," he said. "Natural selection made use of what materials were available – a bird body – and made a hovering machine."

Douglas Warrick | EurekAlert!
Further information:
http://www.science.oregonstate.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>