Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hummingbird flight an evolutionary marvel


Humans with an appreciation of beauty may have marveled for millennia at the artistry of a darting hummingbird, but scientists announced today that for the first time they can more fully explain how a hummingbird can hover.

Using a powerful technology that was originally developed for engineering, researchers were able to exactly document the movement of air around a hummingbird’s wings and show how its flight is accomplished with the body structure of a bird but some of the aerodynamic tricks of an insect.

This gives it an ability to hover almost indefinitely - an evolutionary advantage in feeding on plant nectar that no other bird has - and an elegance that has charmed people for generations.

The findings were published today in the journal Nature, by scientists from Oregon State University, the University of Portland and George Fox University.

"For decades most researchers thought that hummingbirds had the same flight mechanisms as insects, some of which can hover and dart around in the same way," said Douglas Warrick, an assistant professor of zoology at OSU. "But a hummingbird is a bird, with the physical structure of a bird and all of the related capabilities and limitations. It is not an insect, and it does not fly exactly like an insect."

Flying insects have wings that are almost flat. They gain lift with two mirror-image halfstrokes as the wing moves back and forth in a figure eight pattern, producing nearly equal lift during the downstroke and upstroke. Hummingbird wings move in a similar pattern, and like insects, a hummingbird can invert its wings – turn them upside down during the upstroke – a fair amount more than an average bird. Thus, is has long been assumed that hummingbirds, like insects, were developing equal amounts of lift during both halves of the wing cycle.

But Warrick and his colleagues, Brett Tobalske at the University of Portland and Don Powers at George Fox University, suspected the similarities were misleading.

Bird wings are quite different than those of insects. The bone structure of bird wings, in fact, in some ways is more like that of a human arm that an insect wing. Both birds and humans have a single larger upper bone in their limb called the humerus, and two bones in the lower limb called the radius and ulna. The "fingers" in birds have been welded together into a structure called the manus, onto which most of their feathers are attached.

"We looked at hummingbird flight for 70 years with high speed cameras, but still could only make assumptions and educated guesses about what was happening," Warrick said. "The technology we have now is like a big new telescope showing us parts of the sky we never saw before."

That technology, Warrick said, is called digital particle imaging velocimitry, which has never before been applied to the study of hovering birds. This system atomizes olive oil into microscopic droplets that are so light they move instantly with the slightest movement of air - and a pulsing laser then illuminates the droplets for incredibly short periods of time that can be captured by cameras, and illustrate exactly the swirling movement of air left by a hummingbird’s wings. The research was done with rufous hummingbirds, a migratory species common in Oregon.

"The images we obtained were astonishing," Warrick said.

They showed that because of the limitations of its wing structure, a hummingbird develops only 25 percent of its weight support during the upstroke, while producing the remaining 75 percent during downstroke.

While not the equality of half-strokes that insects exhibit, it’s still very different from other birds, which produce virtually all of their flying lift on the downstroke. And a hummingbird also taps into "leading edge vortices," an aerodynamic mechanism commonly taken advantage of by insects, to provide some of this lift on the downstroke. The tiny swirls of these vortices were clearly illustrated by the new laser images of hummingbird flight.

"What the hummingbird has done is take the body and most of the limitations of the bird, but tweaked it a little and used some of the aerodynamic tricks of an insect to gain a hovering ability," Warrick said. "They make use of what is, in other birds, an aerodynamically wasted upstroke. Coupled with taking advantage of leading edge vortices – which you can only produce to substantial effect if you’re small – and voila, you’re hovering for as long as you want."

Hummingbirds can hover well enough for a sustained period of time to have an evolutionary advantage, Warrick said.

"It may not be the elegant, symmetrical flight of insects, but it works," he said. "It’s good enough. Hovering is expensive, more metabolically expensive than any other type of flight, but as insects have found, nectar from a flower is an even bigger payoff."

"Hummingbirds arrived at the ability to hover from a totally different evolutionary path, and they borrowed a few aerodynamic concepts from insects along the way," he said. "Natural selection made use of what materials were available – a bird body – and made a hovering machine."

Douglas Warrick | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Generation of a Stable Biradical
22.03.2018 | Julius-Maximilians-Universität Würzburg

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>