Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Vicious cycle’ of protein formation involved in Parkinson’s disease


Researchers at UT Southwestern Medical Center have discovered a mechanism that causes a protein to clump together in brain cells of people with Parkinson’s disease, pointing toward a possible treatment for the condition.

The protein clumping is part of a "vicious cycle," the researchers said. As the proteins cluster, they inhibit an enzyme that normally breaks them down, leading to the formation of even more masses.

"It’s a disease involving accumulation of a protein in an aberrant form," said Dr. Philip Thomas, professor of physiology at UT Southwestern and senior author of the study. The research, available online, was published in the June 17 issue of The Journal of Biological Chemistry.

The findings have parallels to other diseases in which protein clusters form in and around nerves, such as Huntington’s and Alzheimer’s disease.

The culprit in Parkinson’s is the protein alpha-synuclein, which normally appears in a long, folded form in cells. It’s known to be linked to the disease because mutations in it cause rare, inherited cases of early-onset Parkinson’s.

Normally, if a cell becomes stressed, alpha-synuclein unfolds, and an enzyme degrades it completely into harmless bits to prevent the clumping. In Parkinson’s patients, however, some of the degrading enzyme malfunctions and creates truncated fragments of alpha-synuclein rather than the harmless bits.

UT Southwestern researchers found that these truncated fragments act like "seeds," encouraging the unfolded form of alpha-synuclein to gather around them. It doesn’t take much – just a few molecules of the truncated fragments – to activate this process. Eventually, the cluster is big enough to form a structure called a fibril.

The two forms of the enzyme are usually in balance, with the normal activity outperforming the malicious activity, Dr. Thomas said.

But when the system goes out of balance, the fibrils suppress the normally functioning enzyme, preventing it from fully breaking down the unfolded alpha-synuclein, resulting in even more of the protein being available to form clumps. The clumps also alter the structure of the enzyme in such a way that it produces even more seed fragments. This leads to the formation of more clumps, and so on.

Scientists are still debating which form of the alpha-synuclein protein actually damages the cells, said Dr. Chang-Wei Liu, research fellow in physiology at UT Southwestern and lead author of the study. It could be the mature fibril, or one of the intermediate forms that appears during the degradation process, he said.

Future research may involve uncovering methods to inhibit just the malicious form of the enzyme, while leaving the functions of the normal enzyme unaffected, Dr. Thomas said. Inhibiting only one form is vital, because the normal enzyme is necessary for cells to survive.

Still, the finding reported in The Journal of Biological Chemistry "gives us clues about potential new treatment avenues," he said.

Other UT Southwestern authors of the study are Karen Lewis, student research assistant in physiology, and Dr. George DeMartino, professor of physiology. Researchers at the University of Pennsylvania School of Medicine also contributed.

Aline McKenzie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>