Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental chemical cocktail may sabotage sperm

22.06.2005


New research has shown that combinations of chemicals found in everyday products and food have subtle but potentially damaging effects on sperm fertility.



Professor Lynn Fraser told the 21st annual conference of the European Society of Human Reproduction and Embryology today (Wednesday), that her previous research had shown that certain chemicals known to mimic the female sex hormone, oestrogen, could individually affect the correct functioning of mouse sperm, but now her new research showed that when the chemicals were combined they had an even stronger effect. In addition, when she tested one chemical, genistein (found in soya and legumes), on human sperm, she found that the human sperm were much more sensitive to it than mouse sperm. Even tiny doses could cause human sperm to "burn out" and lose fertility.

Prof Fraser, who is Professor of Reproductive Biology at King’s College London, said: "Given that these environmental oestrogenic xenobiotics [chemicals] are effective at very low concentrations, with combinations of compounds being even more potent, these results could have important negative implications for human fertility for two reasons. Firstly, humans are likely to be exposed to more than one such compound at any given time and, secondly, our results show that human sperm are even more sensitive to these compounds than mouse sperm."


Prof Fraser and her team tested combinations of three chemicals: genistein, 8-prenylnaringenin which is found in hops, and nonylphenol which is found in industrial products such as paints, herbicides and pesticides, cleaning products and in the production of pulp paper and textiles. They investigated the effect the chemicals had on capacitation, the stage when a sperm acquires the ability to fertilise an egg.

"We found that combinations of small quantities of these three xenobiotics stimulated sperm far more than when used individually," she said. In particular, the chemicals stimulated the sperm to undergo an acrosome reaction. This is when the cap on the head of the sperm ruptures and releases enzymes that enable the sperm to penetrate the coverings of the egg. If the acrosome reaction happens before a sperm reaches the egg, then fertilisation is unable to take place because the sperm has lost special "docking" molecules that allow it to bind to the egg.

Prof Fraser said: "Human sperm proved to be even more responsive than mouse sperm to genistein. These compounds are classified as environmental oestrogens, but they are very weak, so normally you would expect them to have to be in concentrations around 1,000 times stronger to get a response similar to that prompted by the naturally occurring oestrogen, oestradiol. Yet human sperm are responding to very low concentrations – well within the amounts that have been measured in people’s blood.

"At a time when there are concerns that the incidence of infertility may be rising, this research flags up important warning signs. Very little is currently known about the control of sperm function, especially in the body rather than in the laboratory, but the sensitivity of human sperm to these chemicals means that further investigations should be carried out to determine whether such environmental compounds might contribute to a decrease in human fertility. Other scientists have investigated the negative impact of environmental chemicals on testis function, resulting in reduced numbers of sperm being produced, but these effects require much larger doses than we have used. As far as I am aware, we are the only group looking at subtle effects that could have a serious impact on fertility without reducing the number of sperm being produced."

The mechanism of action of the environmental oestrogens was still not clear, but the researchers discovered that both genistein and nonylphenol significantly stimulated the production of cyclic AMP – a chemical messenger, produced within the cell after external compounds have acted on the cell, that prompts an appropriate response. In the case of sperm, increased cAMP production appeared to stimulate premature sperm capacitation. "The sperm were still alive and their ability to move was unaffected, but the spontaneous acrosome reaction meant that they were unable to fertilise an egg," said Prof Fraser.

She said that the chemicals were more likely to affect sperm when they reached the female tract where they would be preparing to fertilise eggs. "Maternal exposure to the compounds is probably more important than paternal exposure. Given the likelihood that all of us are exposed to several xenobiotics at any one time, with soya in the diet and exposure to other compounds coming from plastics etc, we need to investigate their possible effects on the fertility of human sperm as quickly as possible."

Mary Rice | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>