Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental chemical cocktail may sabotage sperm

22.06.2005


New research has shown that combinations of chemicals found in everyday products and food have subtle but potentially damaging effects on sperm fertility.



Professor Lynn Fraser told the 21st annual conference of the European Society of Human Reproduction and Embryology today (Wednesday), that her previous research had shown that certain chemicals known to mimic the female sex hormone, oestrogen, could individually affect the correct functioning of mouse sperm, but now her new research showed that when the chemicals were combined they had an even stronger effect. In addition, when she tested one chemical, genistein (found in soya and legumes), on human sperm, she found that the human sperm were much more sensitive to it than mouse sperm. Even tiny doses could cause human sperm to "burn out" and lose fertility.

Prof Fraser, who is Professor of Reproductive Biology at King’s College London, said: "Given that these environmental oestrogenic xenobiotics [chemicals] are effective at very low concentrations, with combinations of compounds being even more potent, these results could have important negative implications for human fertility for two reasons. Firstly, humans are likely to be exposed to more than one such compound at any given time and, secondly, our results show that human sperm are even more sensitive to these compounds than mouse sperm."


Prof Fraser and her team tested combinations of three chemicals: genistein, 8-prenylnaringenin which is found in hops, and nonylphenol which is found in industrial products such as paints, herbicides and pesticides, cleaning products and in the production of pulp paper and textiles. They investigated the effect the chemicals had on capacitation, the stage when a sperm acquires the ability to fertilise an egg.

"We found that combinations of small quantities of these three xenobiotics stimulated sperm far more than when used individually," she said. In particular, the chemicals stimulated the sperm to undergo an acrosome reaction. This is when the cap on the head of the sperm ruptures and releases enzymes that enable the sperm to penetrate the coverings of the egg. If the acrosome reaction happens before a sperm reaches the egg, then fertilisation is unable to take place because the sperm has lost special "docking" molecules that allow it to bind to the egg.

Prof Fraser said: "Human sperm proved to be even more responsive than mouse sperm to genistein. These compounds are classified as environmental oestrogens, but they are very weak, so normally you would expect them to have to be in concentrations around 1,000 times stronger to get a response similar to that prompted by the naturally occurring oestrogen, oestradiol. Yet human sperm are responding to very low concentrations – well within the amounts that have been measured in people’s blood.

"At a time when there are concerns that the incidence of infertility may be rising, this research flags up important warning signs. Very little is currently known about the control of sperm function, especially in the body rather than in the laboratory, but the sensitivity of human sperm to these chemicals means that further investigations should be carried out to determine whether such environmental compounds might contribute to a decrease in human fertility. Other scientists have investigated the negative impact of environmental chemicals on testis function, resulting in reduced numbers of sperm being produced, but these effects require much larger doses than we have used. As far as I am aware, we are the only group looking at subtle effects that could have a serious impact on fertility without reducing the number of sperm being produced."

The mechanism of action of the environmental oestrogens was still not clear, but the researchers discovered that both genistein and nonylphenol significantly stimulated the production of cyclic AMP – a chemical messenger, produced within the cell after external compounds have acted on the cell, that prompts an appropriate response. In the case of sperm, increased cAMP production appeared to stimulate premature sperm capacitation. "The sperm were still alive and their ability to move was unaffected, but the spontaneous acrosome reaction meant that they were unable to fertilise an egg," said Prof Fraser.

She said that the chemicals were more likely to affect sperm when they reached the female tract where they would be preparing to fertilise eggs. "Maternal exposure to the compounds is probably more important than paternal exposure. Given the likelihood that all of us are exposed to several xenobiotics at any one time, with soya in the diet and exposure to other compounds coming from plastics etc, we need to investigate their possible effects on the fertility of human sperm as quickly as possible."

Mary Rice | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>