Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anthrax inhibitors identified by Burnham team

22.06.2005


Novel and efficient inhibitors of anthrax lethal factor identified by Burnham team



A collaborative team of scientists led by The Burnham Institute’s Maurizio Pellecchia, Ph.D., has identified inhibitors of the anthrax toxin, termed lethal factor ("LF") that could be developed into an emergency treatment for exposure to inhalation anthrax. These findings will be published by the Proceedings of the National Academy of Sciences by Early Edition at the journal’s website the week of June 20th.

Bacillus anthracis ("anthrax") is a proven agent of biological terrorism. Pulmonary anthrax, in which spores of the anthrax bacteria are inhaled, is typically fatal unless diagnosis is made at an early stage of infection, when antibiotics such as Ciprofloxacin can provide a complete cure. At late stages in the disease, antibiotics can kill the anthrax bacteria, but do not affect LF secreted by the bacteria, which is sufficiently concentrated in the bloodstream. LF enters cells and inactivates a human protein called "mitogen-activated protein kinase", or "MAPKK", disrupting the normal signaling pathways of the cell and inducing cell-death.


Using a fragment-based approach based on assays conducted with highly sensitive nuclear magnetic resonance ("NMR") techniques developed in Dr. Pellecchia’s laboratory, the scientists were able to identify a scaffold that served as a template for designing a preferred structure for small-molecule inhibitors of LF. Lead compounds were synthesized and validated as highly potent and selective against LF in vitro. In in vitro assays, the compounds did not affect prototype human metalloproteinase enzymes that are structurally similar to LF. This is very important as selectivity is a fundamental prerequisite for a drug to be safe for use in humans.

Three lead compounds where tested in mice infected with anthrax spores, in combination with the antibiotic Ciprofloxacin. The survival rate for mice treated with each of the compounds tested in the combination therapy was two-fold over mice treated with Ciprofloxacin alone.

"This represents a significant advance in developing a possible emergency treatment for anthrax," said Dr. Pellecchia. "We are working on refining the chemical structure of the compound with the goal of achieving an even more potent and selective drug that should exhibit a higher degree of protection against anthrax."

This research was supported by grants from the National Institute of Allergy and Infectious Diseases, from the National Institutes of Health.

Coauthors on this study include:

Martino Forino, Sherida Johnson, Tian Y. Wong, Dimitri V. Rozanov, Alexei Y. Savinov, Wei Li, Roberto Fattorusso, Barbara Becattini, and Dawoon Jung, from The Burnham Institute.
Robert Liddington, Ph.D., Acting Director, Center for Infectious and Inflammatory Diseases at The Burnham Institute;
Alex Strongin, Ph.D., Professor, Cell Adhesion/Extracellular Matrix Program, The Burnham Institute;
Jeffrey Smith, Ph.D., Professor, and Director of the Center for Proteolytic Pathways at The Burnham Institute;
Ruben A. Abagyan, Ph.D., Professor, and Andrew J. Orry, Molecular Biology Department at The Scripps Research Institute;
Ken Alibek, Ph.D., National Center for Biodefense, George Mason University, Fairfax, Virginia.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>