Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find evidence of photosynthesis deep within the ocean

21.06.2005


The discovery of green sulfur bacteria living near hydrothermal vents has major implications for where photosynthesis happens and where life may reside



A team of researchers, including a photosynthesis expert from Arizona State University, has found evidence of photosynthesis taking place deep within the Pacific Ocean. The team found a bacterium that is the first photosynthetic organism that doesn’t live off sunlight but from the dim light coming from hydrothermal vents nearly 2,400 meters (7,875 feet) deep in the ocean.

The discovery of the green sulfur bacteria living near hydrothermal vents off the coast of Mexico has significant implications for the resiliency of life on Earth and possibly on other planets, said Robert Blankenship, a member of the research team and professor and chair of ASU’s chemistry and biochemistry department.


"Life finds a way," Blankenship said of the plucky bacteria that were found in a vent field called 9 North off the coast of Mexico. The bacteria apparently live in the razor thin interface between the extremely hot water (350 C) coming from a flange vent and the very cold water (2 C) surrounding it.

The research team is led by J. Thomas Beatty of the University of British Columbia, Vancouver, B.C., Canada. They published their discovery in "An obligately photosynthetic bacterial anaerobe from a deep sea hydrothermal vent," in the June 20 issue of the Proceedings of the National Academy of Sciences.

In addition to Blankenship and Beatty, team members are Jörg Overmann and Ann Manske, University of Munich, Germany; Michael Lince, Arizona State University; Andrew Lang, University of British Columbia and University of Alaska, Fairbanks; Cindy Van Dover, College of William & Mary, Williamsburg, Va.; Tracey Martinson, University of Alaska, Fairbanks; and F. Gerald Plumley, University of Alaska, Fairbanks and the Bermuda Biological Station for Research, St. George’s, Bermuda.

The team collected water samples around the hydrothermal vents of 9 North and surrounding areas. From the samples near the vents, they cultivated a microbe that grew in response to illumination near the thermal vents. Using DNA analysis the team classified the microbe as a member of the green sulfur bacteria family, which use light and sulfur to obtain energy. The fact that the organism is obligate means it solely relies on photosynthesis to live.

"This is startling in the sense that you do not expect to find photosynthesis in a region of the world that is so completely dark," Blankenship said.

Sunlight can penetrate 100 to 200 meters into the ocean, slowly dimming as you go deeper. Because these organisms live nearly 2,400 meter below the surface, the team believes they must be getting light from the hydrothermal vent near where they were found.

"These organisms are the champions of low light photosynthesis," Blankenship said. "These guys have the most elaborate and sophisticated antenna system, which we have studied for a long time in organisms that are relatives of the one discovered near the vents."

Blankenship explained that the antenna system of the bacteria utilizes a chlorosome complex, which basically acts like a microscopic satellite dish, to efficiently collect any light it can and transfer it to the organism’s reaction center. The reaction center is where the actual photosynthesis takes place.

Blankenship says this discovery is important on two different levels. One is what it means to life on Earth, the other is what it means about where to look for life forms on other planets.

"This shows that photosynthesis is something that is not limited only to the very surface of our planet," he said. "It lets you consider other places where you might find photosynthesis on Earth as well as on other planets."

For example, Europa, a planet-sized satellite of Jupiter, has long been thought to have some of the necessary attributes to harbor life. However, it is far too distant from the Sun for traditional forms of photosynthesis.

It is believed that under the ice covered surface of Europa are liquid oceans and at the bottom of those oceans it is speculated there might be very hot thermal vents and potential for spawning photosynthetic organisms.

"This find shows us that there is this ability of organisms to survive and live in areas that we wouldn’t have imagined possible, and that life is much stronger than what we realized," Blankenship said. "This is just one example of life in extreme environments."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>