Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find evidence of photosynthesis deep within the ocean

21.06.2005


The discovery of green sulfur bacteria living near hydrothermal vents has major implications for where photosynthesis happens and where life may reside



A team of researchers, including a photosynthesis expert from Arizona State University, has found evidence of photosynthesis taking place deep within the Pacific Ocean. The team found a bacterium that is the first photosynthetic organism that doesn’t live off sunlight but from the dim light coming from hydrothermal vents nearly 2,400 meters (7,875 feet) deep in the ocean.

The discovery of the green sulfur bacteria living near hydrothermal vents off the coast of Mexico has significant implications for the resiliency of life on Earth and possibly on other planets, said Robert Blankenship, a member of the research team and professor and chair of ASU’s chemistry and biochemistry department.


"Life finds a way," Blankenship said of the plucky bacteria that were found in a vent field called 9 North off the coast of Mexico. The bacteria apparently live in the razor thin interface between the extremely hot water (350 C) coming from a flange vent and the very cold water (2 C) surrounding it.

The research team is led by J. Thomas Beatty of the University of British Columbia, Vancouver, B.C., Canada. They published their discovery in "An obligately photosynthetic bacterial anaerobe from a deep sea hydrothermal vent," in the June 20 issue of the Proceedings of the National Academy of Sciences.

In addition to Blankenship and Beatty, team members are Jörg Overmann and Ann Manske, University of Munich, Germany; Michael Lince, Arizona State University; Andrew Lang, University of British Columbia and University of Alaska, Fairbanks; Cindy Van Dover, College of William & Mary, Williamsburg, Va.; Tracey Martinson, University of Alaska, Fairbanks; and F. Gerald Plumley, University of Alaska, Fairbanks and the Bermuda Biological Station for Research, St. George’s, Bermuda.

The team collected water samples around the hydrothermal vents of 9 North and surrounding areas. From the samples near the vents, they cultivated a microbe that grew in response to illumination near the thermal vents. Using DNA analysis the team classified the microbe as a member of the green sulfur bacteria family, which use light and sulfur to obtain energy. The fact that the organism is obligate means it solely relies on photosynthesis to live.

"This is startling in the sense that you do not expect to find photosynthesis in a region of the world that is so completely dark," Blankenship said.

Sunlight can penetrate 100 to 200 meters into the ocean, slowly dimming as you go deeper. Because these organisms live nearly 2,400 meter below the surface, the team believes they must be getting light from the hydrothermal vent near where they were found.

"These organisms are the champions of low light photosynthesis," Blankenship said. "These guys have the most elaborate and sophisticated antenna system, which we have studied for a long time in organisms that are relatives of the one discovered near the vents."

Blankenship explained that the antenna system of the bacteria utilizes a chlorosome complex, which basically acts like a microscopic satellite dish, to efficiently collect any light it can and transfer it to the organism’s reaction center. The reaction center is where the actual photosynthesis takes place.

Blankenship says this discovery is important on two different levels. One is what it means to life on Earth, the other is what it means about where to look for life forms on other planets.

"This shows that photosynthesis is something that is not limited only to the very surface of our planet," he said. "It lets you consider other places where you might find photosynthesis on Earth as well as on other planets."

For example, Europa, a planet-sized satellite of Jupiter, has long been thought to have some of the necessary attributes to harbor life. However, it is far too distant from the Sun for traditional forms of photosynthesis.

It is believed that under the ice covered surface of Europa are liquid oceans and at the bottom of those oceans it is speculated there might be very hot thermal vents and potential for spawning photosynthetic organisms.

"This find shows us that there is this ability of organisms to survive and live in areas that we wouldn’t have imagined possible, and that life is much stronger than what we realized," Blankenship said. "This is just one example of life in extreme environments."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>