Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly helps reveal the secrets of the fragile-X-syndrome

21.06.2005


The fragile-X-syndrome is one of the major causes of mental retardation.



Scientists from VIB (Flanders Interuniversity Institute for Biotechnology), have been studying fruit flies with symptoms similar to those in humans. From this research, it turns out that something goes wrong with the actin skeleton of the neurons in the brain. This process might also take place in human patients with the fragile-X-syndrome - an important step in uncovering the physical background of this disorder.

Mental retardation


The fragile-X-syndrome is the most common hereditary form of mental retardation and occurs much more often in boys than in girls. Children with the fragile-X-syndrome have certain characteristic features, such as a long face with a large chin, protruding ears, and a high forehead. As a child, they frequently have behavior problems and are sometimes hyperactive, agitated, and clumsy. They are usually mentally handicapped, but the degree of handicap differs from person to person. The behavior problems diminish with the onset of puberty, while the mental handicap remains.

A genetic cause

Since 1991, scientists have known which genetic alteration lies at the basis of the fragile-X-syndrome. This alteration causes the FMRP protein (Fragile X mental retardation protein, named after the syndrome) to lose its function. However, up to now, it has not been clear which bodily reactions are blocked by the loss of function of this one gene, given the fact that the FMRP controls the functioning of many other genes as well. Shedding light on this situation is one of the great challenges for researchers who want to better understand the syndrome and, consequently, the functioning and development of the brain.

Research on fruit flies

Bassem Hassan’s group specializes in this area of research, using fruit flies because they contain the dFMRP protein, which is analogous to the human FMRP protein. Just like humans with the fragile-X-syndrome, fruit flies in which the dFMRP gene has been knocked out display behavior problems and disturbances in the brain. It is these modified flies that the research team in Leuven is using as their model system.

Actin and profilin

Their research has led to the discovery that fruit flies that produce no dFMRP in turn produce more profilin. Profilin, a protein, regulates the dynamics of actin, which has a very important function regarding the form and structure of all types of cells, including neurons. Actin acts as a kind of scaffolding that supports the cell and gives it shape. Too much profilin disturbs the regulation of actin, giving rise to abnormal neuron sub-divisions. The researchers found this clearly in the fruit flies that produce no dFMRP.

A new interaction revealed

With this research, Bassem Hassan and his group (Simon Reeve, Laura Bassetto, and Maarten Leyssen) are the first to demonstrate that dFMRP controls the regulation of the actin skeleton. In fruit flies that produce less or no dFMRP, this entire process goes awry and the neurons no longer form the correct patterns. This is probably also the case for humans, and so this research can lead to a better understanding of the fragile-X-syndrome, and also of the brain’s development. Therefore, the researchers now propose to study this result, which they have obtained in fruit flies, in mice models. These mammals, of course, are a rung closer to humans on the evolution ladder.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>