Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly helps reveal the secrets of the fragile-X-syndrome

21.06.2005


The fragile-X-syndrome is one of the major causes of mental retardation.



Scientists from VIB (Flanders Interuniversity Institute for Biotechnology), have been studying fruit flies with symptoms similar to those in humans. From this research, it turns out that something goes wrong with the actin skeleton of the neurons in the brain. This process might also take place in human patients with the fragile-X-syndrome - an important step in uncovering the physical background of this disorder.

Mental retardation


The fragile-X-syndrome is the most common hereditary form of mental retardation and occurs much more often in boys than in girls. Children with the fragile-X-syndrome have certain characteristic features, such as a long face with a large chin, protruding ears, and a high forehead. As a child, they frequently have behavior problems and are sometimes hyperactive, agitated, and clumsy. They are usually mentally handicapped, but the degree of handicap differs from person to person. The behavior problems diminish with the onset of puberty, while the mental handicap remains.

A genetic cause

Since 1991, scientists have known which genetic alteration lies at the basis of the fragile-X-syndrome. This alteration causes the FMRP protein (Fragile X mental retardation protein, named after the syndrome) to lose its function. However, up to now, it has not been clear which bodily reactions are blocked by the loss of function of this one gene, given the fact that the FMRP controls the functioning of many other genes as well. Shedding light on this situation is one of the great challenges for researchers who want to better understand the syndrome and, consequently, the functioning and development of the brain.

Research on fruit flies

Bassem Hassan’s group specializes in this area of research, using fruit flies because they contain the dFMRP protein, which is analogous to the human FMRP protein. Just like humans with the fragile-X-syndrome, fruit flies in which the dFMRP gene has been knocked out display behavior problems and disturbances in the brain. It is these modified flies that the research team in Leuven is using as their model system.

Actin and profilin

Their research has led to the discovery that fruit flies that produce no dFMRP in turn produce more profilin. Profilin, a protein, regulates the dynamics of actin, which has a very important function regarding the form and structure of all types of cells, including neurons. Actin acts as a kind of scaffolding that supports the cell and gives it shape. Too much profilin disturbs the regulation of actin, giving rise to abnormal neuron sub-divisions. The researchers found this clearly in the fruit flies that produce no dFMRP.

A new interaction revealed

With this research, Bassem Hassan and his group (Simon Reeve, Laura Bassetto, and Maarten Leyssen) are the first to demonstrate that dFMRP controls the regulation of the actin skeleton. In fruit flies that produce less or no dFMRP, this entire process goes awry and the neurons no longer form the correct patterns. This is probably also the case for humans, and so this research can lead to a better understanding of the fragile-X-syndrome, and also of the brain’s development. Therefore, the researchers now propose to study this result, which they have obtained in fruit flies, in mice models. These mammals, of course, are a rung closer to humans on the evolution ladder.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>