Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of obtaining embryonic stem cells could reduce embryo wastage

20.06.2005


Scientists in the USA have discovered a new way of obtaining embryonic stem cells that avoids contamination by other types of cells and reduces the numbers of embryos needed to create embryonic stem cell lines.



Dr Takumi Takeuchi told the 21st annual conference of the European Society of Human Reproduction and Embryology today (Monday 20 June) that if he and his colleagues could replicate the research, which had been carried out in mice, in humans, it would make it easier to collect embryonic stem cells (ESCs) and could make it possible to establish ESC banks. This would enable researchers to have easy access to ESCs to develop better treatments for patients suffering from a range of diseases, as well as for research on fertility.

Until now, embryonic stem cells have been collected from embryos that have developed to the blastocyst stage. In humans this occurs at about day five of development. Before the ESHRE conference began, lead author, Dr Ameeta Bahia, a senior andrologist who works with Professor Gianpiero Palermo at the Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, explained: "Blastocysts are composed of two components: an external one, defined as the trophoblast of about 55 cells that will form the placenta, and a polar mass of about 20 cells, defined as the inner cell mass (ICM) that will generate the embryo and from which we obtain the stem cells. In order to obtain ESCs from the blastocyst, we first have to isolate the ICM from the trophoblast. However, this often results in contamination of ESC cultures by trophoblastic or endodermal cells. Moreover, barely 50% of human fertilised eggs reach the blastocyst stage after being cultured in the laboratory. Therefore, the possibility of harvesting ESCs at an earlier stage of embryo development is enticing."


Dr Bahia took 46 individual cells (blastomeres) from six two-day mouse embryos, which were composed of eight cells. The blastomeres were cultured in the laboratory, and 43 of them started to divide and grow. After about two days, 22 of them started to form ICM-like structures. From these, Dr Bahia managed to establish one ESC line. From a control group of 51 blastocysts, she obtained nine ESC lines.

Dr Takeuchi, also from the Center for Reproductive Medicine and Infertility, told the conference: "This showed that it was possible to isolate and culture blastomeres that were capable of developing into any type of cell, including stem cells, from early stage embryos. The efficiency was comparable to the yield from intact blastocysts. Although the percentage is similar between the two groups, the eight-cell approach wasted only five embryos, while 42 blastocysts (or embryos), made up of about 75 cells each, were lost in the other group. Therefore, if we could replicate the technique in humans it would reduce the wastage of precious material.

"We plan to reproduce this experiment with human embryos. The procedures could be performed on single blastomeres, extracted from embryos during preimplantation genetic diagnosis (PGD) and which are destined to be transferred into women patients as part of assisted reproduction.

"Although this research is still at an early stage, it represents a great opportunity to isolate ESCs from poor quality embryos at an early stage of development, thereby reducing embryo wastage, and it also introduces the possibility of ESC banking."

In mice almost all the fertilised eggs (zygotes) divide and about 90% of these reach the blastocyst stage. In humans, on the other hand, 70-80% of the zygotes divide until day three (eight-cell stage) and only about 50% reach the blastocyst stage. Dr Bahia said: "This raises the possibility that it may be easier to culture human blastomeres, isolated from an early stage embryo, instead of waiting for the blastocyst to develop."

Mary Rice | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>