Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of obtaining embryonic stem cells could reduce embryo wastage

20.06.2005


Scientists in the USA have discovered a new way of obtaining embryonic stem cells that avoids contamination by other types of cells and reduces the numbers of embryos needed to create embryonic stem cell lines.



Dr Takumi Takeuchi told the 21st annual conference of the European Society of Human Reproduction and Embryology today (Monday 20 June) that if he and his colleagues could replicate the research, which had been carried out in mice, in humans, it would make it easier to collect embryonic stem cells (ESCs) and could make it possible to establish ESC banks. This would enable researchers to have easy access to ESCs to develop better treatments for patients suffering from a range of diseases, as well as for research on fertility.

Until now, embryonic stem cells have been collected from embryos that have developed to the blastocyst stage. In humans this occurs at about day five of development. Before the ESHRE conference began, lead author, Dr Ameeta Bahia, a senior andrologist who works with Professor Gianpiero Palermo at the Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, explained: "Blastocysts are composed of two components: an external one, defined as the trophoblast of about 55 cells that will form the placenta, and a polar mass of about 20 cells, defined as the inner cell mass (ICM) that will generate the embryo and from which we obtain the stem cells. In order to obtain ESCs from the blastocyst, we first have to isolate the ICM from the trophoblast. However, this often results in contamination of ESC cultures by trophoblastic or endodermal cells. Moreover, barely 50% of human fertilised eggs reach the blastocyst stage after being cultured in the laboratory. Therefore, the possibility of harvesting ESCs at an earlier stage of embryo development is enticing."


Dr Bahia took 46 individual cells (blastomeres) from six two-day mouse embryos, which were composed of eight cells. The blastomeres were cultured in the laboratory, and 43 of them started to divide and grow. After about two days, 22 of them started to form ICM-like structures. From these, Dr Bahia managed to establish one ESC line. From a control group of 51 blastocysts, she obtained nine ESC lines.

Dr Takeuchi, also from the Center for Reproductive Medicine and Infertility, told the conference: "This showed that it was possible to isolate and culture blastomeres that were capable of developing into any type of cell, including stem cells, from early stage embryos. The efficiency was comparable to the yield from intact blastocysts. Although the percentage is similar between the two groups, the eight-cell approach wasted only five embryos, while 42 blastocysts (or embryos), made up of about 75 cells each, were lost in the other group. Therefore, if we could replicate the technique in humans it would reduce the wastage of precious material.

"We plan to reproduce this experiment with human embryos. The procedures could be performed on single blastomeres, extracted from embryos during preimplantation genetic diagnosis (PGD) and which are destined to be transferred into women patients as part of assisted reproduction.

"Although this research is still at an early stage, it represents a great opportunity to isolate ESCs from poor quality embryos at an early stage of development, thereby reducing embryo wastage, and it also introduces the possibility of ESC banking."

In mice almost all the fertilised eggs (zygotes) divide and about 90% of these reach the blastocyst stage. In humans, on the other hand, 70-80% of the zygotes divide until day three (eight-cell stage) and only about 50% reach the blastocyst stage. Dr Bahia said: "This raises the possibility that it may be easier to culture human blastomeres, isolated from an early stage embryo, instead of waiting for the blastocyst to develop."

Mary Rice | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>