Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method of obtaining embryonic stem cells could reduce embryo wastage


Scientists in the USA have discovered a new way of obtaining embryonic stem cells that avoids contamination by other types of cells and reduces the numbers of embryos needed to create embryonic stem cell lines.

Dr Takumi Takeuchi told the 21st annual conference of the European Society of Human Reproduction and Embryology today (Monday 20 June) that if he and his colleagues could replicate the research, which had been carried out in mice, in humans, it would make it easier to collect embryonic stem cells (ESCs) and could make it possible to establish ESC banks. This would enable researchers to have easy access to ESCs to develop better treatments for patients suffering from a range of diseases, as well as for research on fertility.

Until now, embryonic stem cells have been collected from embryos that have developed to the blastocyst stage. In humans this occurs at about day five of development. Before the ESHRE conference began, lead author, Dr Ameeta Bahia, a senior andrologist who works with Professor Gianpiero Palermo at the Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, explained: "Blastocysts are composed of two components: an external one, defined as the trophoblast of about 55 cells that will form the placenta, and a polar mass of about 20 cells, defined as the inner cell mass (ICM) that will generate the embryo and from which we obtain the stem cells. In order to obtain ESCs from the blastocyst, we first have to isolate the ICM from the trophoblast. However, this often results in contamination of ESC cultures by trophoblastic or endodermal cells. Moreover, barely 50% of human fertilised eggs reach the blastocyst stage after being cultured in the laboratory. Therefore, the possibility of harvesting ESCs at an earlier stage of embryo development is enticing."

Dr Bahia took 46 individual cells (blastomeres) from six two-day mouse embryos, which were composed of eight cells. The blastomeres were cultured in the laboratory, and 43 of them started to divide and grow. After about two days, 22 of them started to form ICM-like structures. From these, Dr Bahia managed to establish one ESC line. From a control group of 51 blastocysts, she obtained nine ESC lines.

Dr Takeuchi, also from the Center for Reproductive Medicine and Infertility, told the conference: "This showed that it was possible to isolate and culture blastomeres that were capable of developing into any type of cell, including stem cells, from early stage embryos. The efficiency was comparable to the yield from intact blastocysts. Although the percentage is similar between the two groups, the eight-cell approach wasted only five embryos, while 42 blastocysts (or embryos), made up of about 75 cells each, were lost in the other group. Therefore, if we could replicate the technique in humans it would reduce the wastage of precious material.

"We plan to reproduce this experiment with human embryos. The procedures could be performed on single blastomeres, extracted from embryos during preimplantation genetic diagnosis (PGD) and which are destined to be transferred into women patients as part of assisted reproduction.

"Although this research is still at an early stage, it represents a great opportunity to isolate ESCs from poor quality embryos at an early stage of development, thereby reducing embryo wastage, and it also introduces the possibility of ESC banking."

In mice almost all the fertilised eggs (zygotes) divide and about 90% of these reach the blastocyst stage. In humans, on the other hand, 70-80% of the zygotes divide until day three (eight-cell stage) and only about 50% reach the blastocyst stage. Dr Bahia said: "This raises the possibility that it may be easier to culture human blastomeres, isolated from an early stage embryo, instead of waiting for the blastocyst to develop."

Mary Rice | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>