Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Van Buchem disease decoded

17.06.2005


Study underscores the importance of non-coding DNA in disease determination



Today a team of scientists provides convincing evidence that the deletion of a large non-coding DNA segment on human chromosome 17 is responsible for Van Buchem disease. This genetic mutation is one of only a few disease-associated mutations discovered to date that alters a long-range transcriptional regulatory element. The study appears online in the journal Genome Research.

"Our study addresses a fundamental issue with regards to the majority of the human genome that is non-coding in nature, and its potential impact on human health," explains Dr. Gabriela Loots, a scientist in the Department of Genome Biology at Lawrence Livermore National Laboratory who headed the study. "Non-coding regions located far away from the genes they regulate are critical for normal gene expression and are capable of leading to dramatic abnormal phenotypes if altered or deleted."


Van Buchem disease is a rare hereditary disorder of the skeletal system that is characterized by progressive osteosclerosis, particularly in the skull and mandible, but also in the clavicles, ribs, and diaphyses of long bones. Consequences of this increased bone mass usually include facial distortions and pinching of cranial nerves, and the increased nerve pressure often leads to deafness and blindness. Onset of the disease generally occurs during childhood and is manifested only in individuals carrying two copies of the mutant allele.

The locus responsible for Van Buchem disease was previously mapped to the short arm of human chromosome 17 near the gene sclerostin (or SOST), whose protein product functions as a negative regulator of bone formation. Mutations in the protein-coding regions of SOST are known to be responsible for sclerosteosis, another genetic disorder with attributes similar to Van Buchem disease. Because SOST was therefore a strong causal candidate for Van Buchem disease, scientists screened the SOST coding sequence for associated mutations, but to no avail.

Recently, however, a large 52-kilobase deletion was identified at a significant distance – approximately 35 kilobases – from the SOST gene in humans. This deletion, although associated perfectly with Van Buchem disease, removed a large non-protein-coding region; thus, its function, if any, in the development of the disease remained unclear.

The current study, which was led by Dr. Loots, was designed to rigorously investigate the underlying molecular mechanism by which this non-coding sequence might ultimately give rise to Van Buchem disease. Her team included researchers from Lawrence Berkeley National Laboratory (Berkeley, CA), the Novartis Institutes for BioMedical Research (Basel, Switzerland), and the DOE Joint Genome Institute (Walnut Creek, CA).

Dr. Loots and her colleagues engineered a human bacterial artificial chromosome (BAC) and generated transgenic mice with and without the 52 kilobases of DNA that are absent in Van Buchem patients. Although SOST was expressed normally in the early mouse embryo from both lines, SOST was dramatically downregulated in adult mice carrying the deletion, when compared to wild-type transgenic mice. These results provided strong evidence that the lack of SOST expression in humans homozygous for the 52-kilobase deletion is caused by a regulatory element – most likely an enhancer – that is located within the 52-kilobase region and that functions in a bone- and age-specific manner.

The team then utilized comparative sequence analyses and transient transfection assays to identify the actual enhancer sequence within the 52-kilobase deletion region that is responsible for SOST regulation. They aligned 140-kilobases of the human SOST region with the orthologous mouse sequence and identified seven evolutionarily conserved regions (ECRs). The seven ECRs were subjected to in vitro transient transfection enhancer analyses, and one of them – a 250-base-pair region named ECR5 – was found to drive expression in osteoblast-like cells.

These results provide a strong causal link between the 52-kilobase deletion and Van Buchem disease in humans. Drs. Michaela Kneissel and Hansjoerg Keller, collaborators on the project from the Novartis Institutes for BioMedical Research in Basel, Switzerland, point out that, in addition to addressing a fundamental problem in genomics, this project has clinical relevance. "Human genetic diseases of the skeleton, such as sclerosteosis and Van Buchem disease, provide a starting point for understanding the modulation of anabolic bone formation, and ultimately have the potential to identify key molecular components that can be used as new therapeutic agents to treat individuals suffering from bone loss disorders," say the researchers.

On an important scientific note, the methodological approaches employed by these researchers in elucidating the basis for Van Buchem disease will be widely applicable and very powerful in the characterization of other distant, cis-acting regulatory elements.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>