Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Parasite whips up ideas for bowel cancer treatments


A study of how the body expels parasitic worms has led to a surprising new discovery about the immune system that could help in the treatment of bowel cancer.

Scientists investigating whipworms, parasites that infect one-fifth of the world’s population as well as livestock and domestic animals, have discovered a new way that the body effectively eliminates the parasites.

The University of Manchester research, published in the US journal Science, found the reason why some hosts were able to expel the worms naturally without the need for treatment. “This is a completely new way in which the immune system controls disease and may lead scientists to look at new ideas in the treatment of inflammatory bowel diseases and even bowel cancer,” said Dr Laura Cliffe in the Faculty of Life Sciences, who carried out the research. “During our investigations we discovered that the immune system does more than what it currently says in the text books – it controls other physiological systems.

“The body naturally renews the lining of the gut every few days as cells rise to the surface and are discarded. The whipworm attaches itself to the lining and then must burrow faster than the rate of cell renewal in order to remain in the gut, similar to walking the wrong way down an escalator. “What we found is that hosts whose bodies generated a good allergic response to the worms were able to increase the rate of cell renewal in the intestine and force the parasites to the surface and out through the normal channels.

Human whipworm (trichuris trichiura) is a 3cm-to-5cm-long nematode or roundworm that gets its name from its whip-like shape. Once inside their host, adult worms produce eggs that are passed in the faeces and mature in the soil. If the eggs are ingested, they hatch in the large intestine where they can cause trichuriasis, a disease most common in warm, humid climates, including much of the developing world but also south-eastern United States.

Patients with mild infections may have few or no symptoms but, in cases of heavy infection, the patient may suffer abdominal cramps and symptoms resembling amoebic dysentery. In children, severe trichuriasis can be more serious, leading to anaemia, growth stunting and developmental problems. It may also influence the effectiveness of vaccines against diseases such as tuberculosis and how we cope with other infections such as malaria. “Nematodes are one of the most successful groups of animals on the planet, many exquisitely adapted to being parasites, and we have much to learn from them,” said Professor Richard Grencis, who leads the research team. “Once attached to the lining of the intestine, whipworm slows down the rate at which the host renews its cells allowing it to burrow further into the gut wall.

“We were able to counteract this by speeding up the cell ‘escalator’ artificially but some hosts we studied managed to do this naturally. It’s ultimately our genes that determine whether we make the right immune response.”

Aeron Haworth | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>