Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It Is Safer To Keep Variola Virus In Fragments

17.06.2005


Physicians have won the victory over the natural variola virus: it does not exist in nature any longer. Now, it is also necessary to destroy the viruses kept in the laboratory, however, their genetic material should be preserved. Resolution of this task in Russia is funded by the International Science and Technology Center (ISTC).



Specialists of the State Research Center of Virology and Biotechnology “Vector” (Ministry of Health of the Russian Federation) supported by the International Science and Technology Center (ISTC) disassembled into fragments complete genomes of 8 cultures of natural variola viruses. In such a form, virus’ genome can be kept for a very long time and used for research work without fear that the virus itself will get into disposal of terrorists or will “escape” the laboratory as a result of an accident.

Large-scale actions undertaken by the world community under the aegis of the World Health Organization allowed to fully eliminate natural variola. At present, natural variola viruses are preserved only in collections of two collaborative research centers: in the Center for Disease Control and Prevention (CDC) (Atlanta, USA) and in the State Research Center of Virology and Biotechnology “Vector”. Since 1980, immunization of population against natural variola virus was ceased in all countries, and the amount of people sensitive to this disease is constantly growing. Repositories of viable cultures of the virus are a source of possible biological hazard. Therefore, World Health Organization decided in 1986 that it was necessary to destroy all collections of natural variola virus’ cultures and their DNAs. Extermination is inevitable, but it will be a great loss for virology and medicine. Firstly, functioning and organization of this virus have not been studied in detail, secondly, although nobody falls ill with natural variola now, specialists should have the opportunity to develop contemporary express-diagnostics methods. To continue the research, the Russian scientists had to develop a safe way for preservation of genetic material of this virus.


The preservation problem was solved with the help of the polymerase chain reaction method. This technology allows to get copies of sufficiently expanded DNA fragments which make approximately one fifth of natural variola virus’ genome. However, such fragments can be destroyed in the course of long storage and, no matter how numerous they are, will sooner or later come to the end, and there will be no source to get new ones. Therefore, all fragments were embedded into vectorial molecules, which can be maintained and reproduced in the cells of Escherichia coli. The Novosibirsk virologists have transferred into such fragmentary collection genomes of 8 cultures of natural variola virus collected in various locations of the globe and belonging to two epidemiological types (variola major and variola minor alastrium). The museum created in such a way is a representative, safe and long-term repository of virus’ genetic information. Each construction represented in the collection is assigned its personal number and provided with a passport - description. At present, the museum is used as a basis for studying structure functional organization of individual genes, areas and the entire genome of natural variola virus. Genetic material stored in the museum is applied to create contemporary species-specific diagnostics methods, such as hybridization on microchips.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>