Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It Is Safer To Keep Variola Virus In Fragments

17.06.2005


Physicians have won the victory over the natural variola virus: it does not exist in nature any longer. Now, it is also necessary to destroy the viruses kept in the laboratory, however, their genetic material should be preserved. Resolution of this task in Russia is funded by the International Science and Technology Center (ISTC).



Specialists of the State Research Center of Virology and Biotechnology “Vector” (Ministry of Health of the Russian Federation) supported by the International Science and Technology Center (ISTC) disassembled into fragments complete genomes of 8 cultures of natural variola viruses. In such a form, virus’ genome can be kept for a very long time and used for research work without fear that the virus itself will get into disposal of terrorists or will “escape” the laboratory as a result of an accident.

Large-scale actions undertaken by the world community under the aegis of the World Health Organization allowed to fully eliminate natural variola. At present, natural variola viruses are preserved only in collections of two collaborative research centers: in the Center for Disease Control and Prevention (CDC) (Atlanta, USA) and in the State Research Center of Virology and Biotechnology “Vector”. Since 1980, immunization of population against natural variola virus was ceased in all countries, and the amount of people sensitive to this disease is constantly growing. Repositories of viable cultures of the virus are a source of possible biological hazard. Therefore, World Health Organization decided in 1986 that it was necessary to destroy all collections of natural variola virus’ cultures and their DNAs. Extermination is inevitable, but it will be a great loss for virology and medicine. Firstly, functioning and organization of this virus have not been studied in detail, secondly, although nobody falls ill with natural variola now, specialists should have the opportunity to develop contemporary express-diagnostics methods. To continue the research, the Russian scientists had to develop a safe way for preservation of genetic material of this virus.


The preservation problem was solved with the help of the polymerase chain reaction method. This technology allows to get copies of sufficiently expanded DNA fragments which make approximately one fifth of natural variola virus’ genome. However, such fragments can be destroyed in the course of long storage and, no matter how numerous they are, will sooner or later come to the end, and there will be no source to get new ones. Therefore, all fragments were embedded into vectorial molecules, which can be maintained and reproduced in the cells of Escherichia coli. The Novosibirsk virologists have transferred into such fragmentary collection genomes of 8 cultures of natural variola virus collected in various locations of the globe and belonging to two epidemiological types (variola major and variola minor alastrium). The museum created in such a way is a representative, safe and long-term repository of virus’ genetic information. Each construction represented in the collection is assigned its personal number and provided with a passport - description. At present, the museum is used as a basis for studying structure functional organization of individual genes, areas and the entire genome of natural variola virus. Genetic material stored in the museum is applied to create contemporary species-specific diagnostics methods, such as hybridization on microchips.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>