Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It Is Safer To Keep Variola Virus In Fragments

17.06.2005


Physicians have won the victory over the natural variola virus: it does not exist in nature any longer. Now, it is also necessary to destroy the viruses kept in the laboratory, however, their genetic material should be preserved. Resolution of this task in Russia is funded by the International Science and Technology Center (ISTC).



Specialists of the State Research Center of Virology and Biotechnology “Vector” (Ministry of Health of the Russian Federation) supported by the International Science and Technology Center (ISTC) disassembled into fragments complete genomes of 8 cultures of natural variola viruses. In such a form, virus’ genome can be kept for a very long time and used for research work without fear that the virus itself will get into disposal of terrorists or will “escape” the laboratory as a result of an accident.

Large-scale actions undertaken by the world community under the aegis of the World Health Organization allowed to fully eliminate natural variola. At present, natural variola viruses are preserved only in collections of two collaborative research centers: in the Center for Disease Control and Prevention (CDC) (Atlanta, USA) and in the State Research Center of Virology and Biotechnology “Vector”. Since 1980, immunization of population against natural variola virus was ceased in all countries, and the amount of people sensitive to this disease is constantly growing. Repositories of viable cultures of the virus are a source of possible biological hazard. Therefore, World Health Organization decided in 1986 that it was necessary to destroy all collections of natural variola virus’ cultures and their DNAs. Extermination is inevitable, but it will be a great loss for virology and medicine. Firstly, functioning and organization of this virus have not been studied in detail, secondly, although nobody falls ill with natural variola now, specialists should have the opportunity to develop contemporary express-diagnostics methods. To continue the research, the Russian scientists had to develop a safe way for preservation of genetic material of this virus.


The preservation problem was solved with the help of the polymerase chain reaction method. This technology allows to get copies of sufficiently expanded DNA fragments which make approximately one fifth of natural variola virus’ genome. However, such fragments can be destroyed in the course of long storage and, no matter how numerous they are, will sooner or later come to the end, and there will be no source to get new ones. Therefore, all fragments were embedded into vectorial molecules, which can be maintained and reproduced in the cells of Escherichia coli. The Novosibirsk virologists have transferred into such fragmentary collection genomes of 8 cultures of natural variola virus collected in various locations of the globe and belonging to two epidemiological types (variola major and variola minor alastrium). The museum created in such a way is a representative, safe and long-term repository of virus’ genetic information. Each construction represented in the collection is assigned its personal number and provided with a passport - description. At present, the museum is used as a basis for studying structure functional organization of individual genes, areas and the entire genome of natural variola virus. Genetic material stored in the museum is applied to create contemporary species-specific diagnostics methods, such as hybridization on microchips.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>