Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-AIDS Drug Becomes Ten Times Less Toxic

17.06.2005


Outstanding antiviral action of multiple antibiotics remains unclaimed due to high drug toxicity. Russian physicians are trying to get nontoxic drug dosage form and have achieved success as regards to anit-AIDS antibiotic – Heliomycinum. Their effort has been funded by the International Science and Technology Center.



Specialists of the Lomonosov Moscow State Academy of Fine Applied Chemistry and Ivanovsky Scientific Research Institute of Virology (Russian Academy of Medical Sciences) have found the way to reduce by ten times toxicity of anit-AIDS antibiotic Heliomycinum (Resistomycinum). To this end, antibiotic was enclosed into an adipose (lipidic) bubble - liposome.

Utilization of liposomes as a carrier of drugs is increasingly attracts attention of researchers. Liposomes are non-toxic and get fully decomposed in the organism. As lipids’ disintegration occurs gradually, the drug enclosed in liposome is also released in small doses, thus allowing to create drugs with durable action and to reduce their toxicity.


Heliomycinum is one of the drugs whose toxicity the researchers are eager to reduce. This antibiotic blocks the action of several specific enzymes of human immunodeficiency virus, therefore, it has been considered a promising antiviral drug for a long time. However, Heliomycinum has not been widely accepted in medicine due to very poor solubility in water and high toxicity. Heliomycinum inclusion into liposomes would improve the drug quality and allow to create its injection form of low toxicity.

To obtain a liposomic drug, the researchers added the Heliomycinum solution in the chloroform and methanol mixture to the lipidic film. Samples were frozen in liquid nitrogen and stirred up at room temperature. The freezing/thawing cycle was repeated for five more times. As a result, antibiotic embedded into the lipidic film. Then, the mixture was forced through the filters with small interstices to separate non-bound Heliomycinum, and the medicinal mixture itself was smashed to small bubbles containing known concentration of antibiotic. The researchers sorted out such lipid composition that up to 97 percent of Heliomycinum is included into liposomes. Having hidden Heliomycinum into liposomes, the researchers succeeded to dissolve it in physiological solution, which is important for pharmaceutical purposes.

The liposome drug toxicity was tried on the culture of embryonic fibroblasts. Heliomycinum in aqueous solution destroyed every single cell already within 24 hours, and toxicity of liposomic form turned out to be ten times lower. Antiviral activity of liposomic Heliomycinum was tried on the culture of fibroblasts which were infected by cytomegalovirus. This human virus does not cause diseases and ideally fits for model experiments. A new drug has turned out to be active against virus, the drug being applied in such concentration that it is non-toxic for cells.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>