Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing Receptor Molecule Causes Tumor Growth

16.06.2005


A missing receptor molecule contributes to the growth of tumors in human ovaries. This surprisingly evident connection has now been proven by a team at the Medical University of Vienna, who published their data in the science journal Molecular Cancer Research. The team, who is supported by funding from the Austrian Science Fund FWF, also discovered the possible genetic reason why the receptor molecule, which is an important factor in regulating cell growth, is missing.


Immunohistochemistry shows the down regulation of DR4 receptor molecules in an affected tumor (A) where the cells have lost their capacity to undergo apoptosis compared to an unaffected tumor sample (B).



In healthy tissue, cells grow and divide - this is also true of cancerous tumors. The difference between the two lies in the regulation, which functions well in healthy tissue, but not in tumors. An important mechanism of this regulation is programmed cell death, known as apoptosis. It causes the controlled death of single cells, if this is to the advantage of the whole organism. If this process of self-protection does not work then the destructive cells can proliferate uncontrollably.

Signal Without Effect


Prof. Michael Krainer and his team from the Medical University of Vienna have now been able to prove that programmed cell death does not function in cells of certain tumors in the ovaries. Not because the starting signal is missing, but because this signal cannot be received by the cell.

This finding, published today in the American science journal Molecular Cancer Research, shows that these cells lack a receptor molecule called DR4. DR4 is responsible for receiving the signal molecule TRAIL, which initiates apoptosis in these cells.

Prof. Krainer explains: "To begin with it was not evident what was missing in the signal transmission. The signal or the receptor molecule? To answer this question, we examined ten different ovarian cancer cell lines. In doing this we found out that 40% of these specimens contained none or only a few DR4 receptor molecules." It was proven in further tests that these cells react particularly badly to TRAIL. This proves that the missing receptor and not the missing signal can contribute significantly to tumor growth.

Silenced Genes

Further tests proved why there was such a small number of receptors. Prof. Krainer: "There can be two reasons for the loss of a receptor molecule like DR4. Firstly, the responsible gene could have been lost or damaged. Secondly, this gene could have been modified in a way which would prevent it from functioning." It was exactly the latter. Prof. Krainer and his team ascertained that in 75% of the specimens which contained only a few DR4 receptors the responsible gene was modified. Some components of this gene were modified by attaching methyl groups. Methylation is indeed a common way in which cells silence genes, but in the affected tumor cells, it obviously happens at the wrong time.

To conclude their research, Prof. Krainer and his colleagues retested their findings: Their results were confirmed by testing 36 different tumor tissues taken directly from patients. In comparison, these cells represent the real causes of disease much better than cell cultures commonly used for experimental research. It was determined that in 20% of the tissues examined the gene responsible for DR4 was methylated to a higher degree and DR4 was missing.

This research supported by funding from the Austrian Science Fund, FWF, paves the way for future therapy through the important discovery that the methylation of the gene for DR4 can contribute to the formation of tumors. These therapies could manipulate the malfunctioning signal transfer system, DR4-TRAIL, to make cancer cells return to the originally programmed cell death.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/press/receptor.html

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>