Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature’s answer to obesity crisis

16.06.2005


Brown bears, squirrels, bats and frogs could hold the key to why western populations are facing an epidemic of type 2 diabetes, according to professor of medicine Peter Grant. If his theory is proven, it will “completely change the view of diabetes and its cause.”



By 2025, 300 million people worldwide will suffer from type 2 diabetes, up to 85 per cent of whom will die of related heart disease. The condition, associated with obesity, develops when the body’s fat cells secrete proteins involved in both cardiovascular disease and the development of insulin resistance, preventing the body from using glucose as an energy source.

Professor Grant, director of the University’s new £10m Leeds Institute of Genetics, Health and Therapeutics (LIGHT), believes the body wouldn’t become resistant to insulin action and hoard fat in this way without a reason. “It’s a physiological process so there must be some kind of benefit,” he said. “The question is, under what circumstances?” When the body’s fat cells – or adipocytes – become full, they send messages to the brain to slow down and conserve energy. There is one circumstance where these responses are vital – animal hibernation.


He suggests that animals have a basic metabolic response that stores energy and develops insulin resistance in preparation for deprivation, usually during long winter months. In hibernating animals, this response is accompanied by prolonged periods of torpor, but in humans and other animals seasonal variations in light and food are critical in regulating energy utilisation, even though man probably never formally hibernated.

What has changed for man is that we now have constant supplies of food and light. As a result, whilst hibernating animals become insulin resistant to conserve energy in response to fat storage for the winter, then lose it during hibernation, we just continue to put on weight. “We have fractured our relationship with our environment – we no longer respond to seasons and we don’t have a fluctuating food supply. As a result we get obese and what should be a short term protective response to help us over winter becomes chronic, harmful and leads to diabetes and cardiovascular disease,” he said.

The theory will be tested in the LIGHT and could give important insights into potential treatments. “If we could identify the genes analogous to those in hibernating animals there is the real potential to develop novel targets for the prevention and treatment of both diabetes and cardiovascular disease.”

Hannah Love | alfa
Further information:
http://reporter.leeds.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>