Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nature’s answer to obesity crisis


Brown bears, squirrels, bats and frogs could hold the key to why western populations are facing an epidemic of type 2 diabetes, according to professor of medicine Peter Grant. If his theory is proven, it will “completely change the view of diabetes and its cause.”

By 2025, 300 million people worldwide will suffer from type 2 diabetes, up to 85 per cent of whom will die of related heart disease. The condition, associated with obesity, develops when the body’s fat cells secrete proteins involved in both cardiovascular disease and the development of insulin resistance, preventing the body from using glucose as an energy source.

Professor Grant, director of the University’s new £10m Leeds Institute of Genetics, Health and Therapeutics (LIGHT), believes the body wouldn’t become resistant to insulin action and hoard fat in this way without a reason. “It’s a physiological process so there must be some kind of benefit,” he said. “The question is, under what circumstances?” When the body’s fat cells – or adipocytes – become full, they send messages to the brain to slow down and conserve energy. There is one circumstance where these responses are vital – animal hibernation.

He suggests that animals have a basic metabolic response that stores energy and develops insulin resistance in preparation for deprivation, usually during long winter months. In hibernating animals, this response is accompanied by prolonged periods of torpor, but in humans and other animals seasonal variations in light and food are critical in regulating energy utilisation, even though man probably never formally hibernated.

What has changed for man is that we now have constant supplies of food and light. As a result, whilst hibernating animals become insulin resistant to conserve energy in response to fat storage for the winter, then lose it during hibernation, we just continue to put on weight. “We have fractured our relationship with our environment – we no longer respond to seasons and we don’t have a fluctuating food supply. As a result we get obese and what should be a short term protective response to help us over winter becomes chronic, harmful and leads to diabetes and cardiovascular disease,” he said.

The theory will be tested in the LIGHT and could give important insights into potential treatments. “If we could identify the genes analogous to those in hibernating animals there is the real potential to develop novel targets for the prevention and treatment of both diabetes and cardiovascular disease.”

Hannah Love | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>