Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For first time, brain cells generated in a dish

14.06.2005


Discovery pinpoints the true ’stem cell’



Regenerative medicine scientists at the University of Florida’s McKnight Brain Institute have created a system in rodent models that for the first time duplicates neurogenesis -- the process of generating new brain cells -- in a dish.

Writing in today’s (June 13) Proceedings of the National Academy of Sciences, researchers describe a cell culture method that holds the promise of producing a limitless supply of a person’s own brain cells to potentially heal disorders such as Parkinson’s disease or epilepsy.


"It’s like an assembly line to manufacture and increase the number of brain cells," said Bjorn Scheffler, M.D., a neuroscientist with UF’s College of Medicine. "We can basically take these cells and freeze them until we need them. Then we thaw them, begin a cell-generating process, and produce a ton of new neurons."

If the discovery can translate to human applications, it will enhance efforts aimed at finding ways to use large numbers of a person’s own cells to restore damaged brain function, partially because the technique produces cells in far greater amounts than the body can on its own.

In addition, the discovery pinpoints the cell that is truly what people refer to when they say "stem cell." Although the term is used frequently to describe immature cells that are the building blocks of bones, skin, flesh and organs, the actual stem cell as it exists in the brain has been enigmatic, according to Dennis Steindler, Ph.D., executive director of the McKnight Brain Institute and senior author of the paper. Its general location was known, but it was an obscure species in a sea of cell types.

"We’ve isolated for the first time what appears to be the true candidate stem cell," said Steindler, a neuroscientist and member of UF’s Program of Stem Cell Biology and Regenerative Medicine. "There have been other candidates, but in this case we used a special microscope that allows us to watch living cells over long periods of time through a method called live-cell microscopy, so we’ve actually witnessed the stem cell give rise to new neurons. Possibly a different method may come up to identify the mother of all stem cells, but we’re confident this is it."

During experiments, scientists collected cells from mice and used chemicals to induce them to differentiate. During the process, they snapped images of the cells every five minutes for up to 30 hours and compiled the images into movies. Traditional ways to attempt neurogenesis have been unable to so closely duplicate the natural process. They also haven’t allowed scientists to monitor the entire sequence of cell development from primitive states to functional neurons and expose the electrophysiological properties of the cells.

A little more than a decade ago, scientists came to realize that the brain continues to produce small amounts of new cells even in adulthood, overturning the belief that people are born with a fixed amount of brain cells that must last them throughout their lives.

In people, stem cells develop naturally into full-fledged brain cells as they travel through a neural pathway that begins deep within the brain in a region called the subventricular zone. The primitive cells mature along the way, finishing as neurons in a spot called the olfactory bulb.

In the laboratory cultures, the cells still move about, but the pathway is no longer important, showing that neurogenesis does not necessarily require the environmental cues of the host brain.

The natural development of stem cells in the brain is very similar to the lifelong production of blood cells in the human body called hematopoiesis, with "poiesis" derived from the Greek word meaning "to make."

Scientists in Steindler’s lab noticed the similarities between primitive cell development in blood and in the brain in the late 1990s, calling the process "neuropoiesis."

"The exciting part is we are actually using methods that researchers involved with hematopoiesis used," Scheffler said. "Those researchers took primitive cells, put them in a dish and watched them perform. From that, they learned vital information for clinical applications such as bone marrow transplants. Now we have a tool to do exactly the same thing."

By watching the cells perform, scientists can make judgments and influence the capacity of the cells to generate specific neurons.

"As far as regenerating parts of the brain that have degenerated, such as in Parkinson’s disease, Huntington’s disease and others of that nature, the ability to regenerate the needed cell type and placing it in the correct spot would have major impact," said Dr. Eric Holland, a neurosurgeon at Memorial Sloan-Kettering Cancer Center in New York who specializes in the treatment of brain tumors, but who is not connected to the research. "In terms of tumors, it’s known that stem-like cells have characteristics much like cancer cells. Knowing what makes these cells tick may help by furthering our knowledge of the biology of the tumor."

John Pastor | EurekAlert!
Further information:
http://www.health.ufl.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>