Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tetanus toxin found to have therapeutic properties

14.06.2005


A team of researchers from the Department of Biochemistry and Molecular Biology and the Institute of Neuroscience at the Universitat Autònoma de Barcelona has discovered that tetanus toxin, which causes tetanus, could be extremely useful as a therapy against psychological disorders such as depression, anxiety and anorexia, and to slow the progress of neurodegenerative disorders such as Parkinson’s disease.



Tetanus toxin is a neurotoxin belonging to the same family as botulinum neurotoxins, which cause botulism. These have been successfully used as a therapy to treat disorders caused by abnormal muscular contractions such as strabismus, cerebral palsy, anal contractions and torticollis. Recently these toxins have been used even in cosmetics against wrinkles. For these therapeutic and cosmetic applications, the scientists are working with sublethal doses of toxins.

Led by José Aguilera, scientists from the Department of Biochemistry and Molecular Biology and the Institute of Neuroscience at the UAB, have studied whether it would also be possible to use sublethal doses of tetanus toxin and molecules derived from tetanus toxin for therapeutic purposes. The results have been obtained in the laboratory after 20 years of studying these toxins, and they are very encouraging.


Two separate, distinct parts form the tetanus toxin molecule: one part is the cause of the toxic effects and the tetanus symptoms; the other, however, is harmless and is able to penetrate and affect the nervous system. This harmless part, called the carboxy-terminal domain, has been reproduced in large quantities in the laboratory so that tests can be carried out on its effects on the nervous system of rats.

The experiments have shown that the harmless part inhibits serotonin from being transported through the synaptic membranes, i.e. the membranes that connect the neurones so that signals can be sent through the brain. The molecule is as effective as the selective inhibitors currently used, but they are more powerful, they last longer, and they are more specific. This inhibitory effect converts the molecule into what could be a drug with many uses. It would be more effective than Prozac and more effective than any drug that works by selectively inhibiting the transportation of serotonin in the nerve endings. Behavioural disorders such as depression, anxiety and anorexia may be treated using the molecule derived from tetanus toxin.

The researchers have also been able to show that toxin and its recombinant fragment, carboxy terminal, the harmless fragment, strengthens the neural cells and protects them from external aggressions. This means it has a neuroprotective effect that prevents the death of the neurons when they are faced with aggressive situations. This is why the scientists believe the harmless toxin fragment could be more effective than neurotrophins as protection against neurodegenerative disorders such as Parkinson’s disease.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>