Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular miners find pain relief drugs from the sea


A cone snail toxin discovered by Melbourne researchers has proven to have great potential for easing pain and could provide an improved treatment for neuropathic pain associated with diabetes.

Melbourne based company Metabolic Pharmaceuticals Limited recently announced successful results in preclinical trials of the toxin. The company will begin clinical trials in humans this month to firstly test the safety of the toxin in normal males, and later its effectiveness in treating the neuropathic pain associated with diabetes.

From the University of Melbourne’s Department of Biochemistry and Molecular Biology and the recently launched Bio21 Institute, Associate Professor Bruce Livett says the toxin – called ACV1 – also has potential for treating a range of other painful conditions, such as multiple sclerosis, shingles and sciatica.

“ACV1 has been shown to be effective in treating pain in several experimental animal models of human pain syndromes, including post-surgical and neuropathic pain,” Associate Professor Livett says.

“In addition, it has the unique property that it appears to accelerate the rate of recovery from a nerve injury.”

“We are very excited that clinical trials to test the effectiveness of ACV1 in humans with diabetic neuropathies will soon be underway and we expect that the potential of ACV1 in treating a range of other painful conditions will also be realised in time.”

ACV1 has shown potential for treating neuropathic pain, that is, pain generated inside the body (arising in the nervous system) as opposed to the other type of pain – nociceptive pain – which comes from the outside in, for example, a burn.

Associate Professor Livett says neuropathic pain is the most difficult form to treat and typically responds poorly to conventional painkillers such as morphine or aspirin. Other treatments have also been found to be largely ineffective.

The great potential of ACV1 is that eliminating neuropathic pain is where it works best.


Associate Professor Livett and his colleagues first discovered ACV1 in 2003 while studying the toxins produced in the venom of Conus victoriae, a marine cone snail found in tropical waters off the coast of Australia.

All cone snails produce venom which they use to paralyse prey before killing and eating them. The venom of some cone snails is toxic to humans – as many as 30 people are known to have died from cone snail envenomation.

The cone snails that are dangerous to humans feed on fish by impaling them with a harpoon styled barb (a modified tooth called a radula) loaded with toxic venom.

Associate Professor Livett says there are up to 200 components in each venom and there are over 500 species of cone snail, each with a different cocktail of venom peptides. Fortunately, most cone snails hunt marine worms or other molluscs and are not harmful to humans.

It may seem unusual that toxic venoms can also be a source of pain relieving medication for humans.

Associate Professor Livett explains, “It appears that cone snails have adopted the general strategy of including a pain-reducing component among the more lethal components of its venom.”

“That is, it first pacifies its victim before immobilising and eventually killing it. Witnesses to cone snail envenomation report that death by cone snail poisoning is seemingly painless.”

It is this special pain-reducing component that the researchers have been interested in.

The Melbourne team, which includes Associate Professors Bruce Livett and Ken Gayler and Dr John Down from the Department of Biochemistry and Molecular Biology, Associate Professor Zeinab Khalil from the University’s National Ageing Research Institute, and research students Mr David Sandall, Mr David Keays and Ms Narmatha Satkunanathan, were the first to isolate and characterise ACV1.

It was a true collaborative venture starting with genes discovered by Associate Professor Gayler, Mr Sandall and Mr Keays, capitalizing on the pharmacological and chemical expertise of Associate Professor Livett and Dr Down, marrying with the physiological and pain assessment expertise of Associate Professor Khalil.

ACV1 is not the only therapeutic compound that cone snail venom has to offer. In fact, the venom is a cocktail of thousands of biologically active compounds of which only a few hundred have been identified.

Associate Professor Gayler says the team, by using genes as the starting point, are able to minimize the number of cone snails required to develop new tools and therapies for medical research and therefore minimise the environmental impact of the research. “With a single cone snail we can create and store large libraries of conotoxin genes.”

It was using this genetic mining technique that ACV1 was discovered – its peptide sequence was predicted solely from the DNA sequence. The peptide was then chemically synthesised in large quantities suitable for biological testing. This same approach is now being used by Metabolic Pharmaceuticals to synthesise gram amounts of ACV1 needed for the planned human clinical trials for diabetic neuropathy.

“With an increasing age demographic in our society the need for more effective pain suppressing compounds is a priority. ACV1 may fill this unmet need,” Associate Professor Livett says.

More information about this article:

Elaine Mulcahy
Media Promotions Officer
Tel: 61 3 8344 0181
Mob: 0421 641 506

Bruce Livett
Biochemistry and Molecular Biology
(03) 8344 2322
0403 010 477

Chris Belyea
Metabolic Pharmaceuticals Ltd

Elaine Mulcahy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>