Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular miners find pain relief drugs from the sea

13.06.2005


A cone snail toxin discovered by Melbourne researchers has proven to have great potential for easing pain and could provide an improved treatment for neuropathic pain associated with diabetes.



Melbourne based company Metabolic Pharmaceuticals Limited recently announced successful results in preclinical trials of the toxin. The company will begin clinical trials in humans this month to firstly test the safety of the toxin in normal males, and later its effectiveness in treating the neuropathic pain associated with diabetes.

From the University of Melbourne’s Department of Biochemistry and Molecular Biology and the recently launched Bio21 Institute, Associate Professor Bruce Livett says the toxin – called ACV1 – also has potential for treating a range of other painful conditions, such as multiple sclerosis, shingles and sciatica.


“ACV1 has been shown to be effective in treating pain in several experimental animal models of human pain syndromes, including post-surgical and neuropathic pain,” Associate Professor Livett says.

“In addition, it has the unique property that it appears to accelerate the rate of recovery from a nerve injury.”

“We are very excited that clinical trials to test the effectiveness of ACV1 in humans with diabetic neuropathies will soon be underway and we expect that the potential of ACV1 in treating a range of other painful conditions will also be realised in time.”

ACV1 has shown potential for treating neuropathic pain, that is, pain generated inside the body (arising in the nervous system) as opposed to the other type of pain – nociceptive pain – which comes from the outside in, for example, a burn.

Associate Professor Livett says neuropathic pain is the most difficult form to treat and typically responds poorly to conventional painkillers such as morphine or aspirin. Other treatments have also been found to be largely ineffective.

The great potential of ACV1 is that eliminating neuropathic pain is where it works best.

Background

Associate Professor Livett and his colleagues first discovered ACV1 in 2003 while studying the toxins produced in the venom of Conus victoriae, a marine cone snail found in tropical waters off the coast of Australia.

All cone snails produce venom which they use to paralyse prey before killing and eating them. The venom of some cone snails is toxic to humans – as many as 30 people are known to have died from cone snail envenomation.

The cone snails that are dangerous to humans feed on fish by impaling them with a harpoon styled barb (a modified tooth called a radula) loaded with toxic venom.

Associate Professor Livett says there are up to 200 components in each venom and there are over 500 species of cone snail, each with a different cocktail of venom peptides. Fortunately, most cone snails hunt marine worms or other molluscs and are not harmful to humans.

It may seem unusual that toxic venoms can also be a source of pain relieving medication for humans.

Associate Professor Livett explains, “It appears that cone snails have adopted the general strategy of including a pain-reducing component among the more lethal components of its venom.”

“That is, it first pacifies its victim before immobilising and eventually killing it. Witnesses to cone snail envenomation report that death by cone snail poisoning is seemingly painless.”

It is this special pain-reducing component that the researchers have been interested in.

The Melbourne team, which includes Associate Professors Bruce Livett and Ken Gayler and Dr John Down from the Department of Biochemistry and Molecular Biology, Associate Professor Zeinab Khalil from the University’s National Ageing Research Institute, and research students Mr David Sandall, Mr David Keays and Ms Narmatha Satkunanathan, were the first to isolate and characterise ACV1.

It was a true collaborative venture starting with genes discovered by Associate Professor Gayler, Mr Sandall and Mr Keays, capitalizing on the pharmacological and chemical expertise of Associate Professor Livett and Dr Down, marrying with the physiological and pain assessment expertise of Associate Professor Khalil.

ACV1 is not the only therapeutic compound that cone snail venom has to offer. In fact, the venom is a cocktail of thousands of biologically active compounds of which only a few hundred have been identified.

Associate Professor Gayler says the team, by using genes as the starting point, are able to minimize the number of cone snails required to develop new tools and therapies for medical research and therefore minimise the environmental impact of the research. “With a single cone snail we can create and store large libraries of conotoxin genes.”

It was using this genetic mining technique that ACV1 was discovered – its peptide sequence was predicted solely from the DNA sequence. The peptide was then chemically synthesised in large quantities suitable for biological testing. This same approach is now being used by Metabolic Pharmaceuticals to synthesise gram amounts of ACV1 needed for the planned human clinical trials for diabetic neuropathy.

“With an increasing age demographic in our society the need for more effective pain suppressing compounds is a priority. ACV1 may fill this unmet need,” Associate Professor Livett says.

More information about this article:

Elaine Mulcahy
Media Promotions Officer
emulcahy@unimelb.edu.au
Tel: 61 3 8344 0181
Mob: 0421 641 506

Bruce Livett
Biochemistry and Molecular Biology
(03) 8344 2322
0403 010 477
b.livett@unimelb.edu.au

Chris Belyea
Metabolic Pharmaceuticals Ltd

Elaine Mulcahy | EurekAlert!
Further information:
http://www.metabolic.com.au
http://www.unimelb.edu.au

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>