Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cell suicide protects plants from infection

13.06.2005


A protective zone of dead cells (brown) around a virus invasion (purple) halts the spread of virus. Credit: Nicolle Rager Fuller, NSF


Researchers at Yale have identified a gene that regulates the major immune response in plants, programmed cell death (PCD), according to a recent report in the journal Cell.

To protect themselves from viruses, plants create a zone of dead cells around an infection site that prevents the infection from spreading. Savithramma Dinesh-Kumar, associate professor of Molecular, Cellular and Developmental Biology at Yale and his colleagues discovered how the plants keep from killing themselves after they turn on the cell-suicide PCD process.

Dinesh-Kumar first developed a technique for silencing or inactivating plant genes -- a technique that is now used by several research groups. His group studies the interaction between plants and viruses using tobacco as a model system.



They identified and silenced a "pro-survival" gene, BECLIN-1, that is important in the PCD response. When BECLIN-1 is active, infection is localized to a small number of cells that later die and form discrete brown lesions on the leaves. When the gene is inactivated, the plant can no longer regulate PCD, leading to cell death throughout the leaf and plant.

PCD has been described in virtually all cell types, both plant and animal. It is an important aspect of many biological processes including immune system function, embryonic development and elimination of defective cells. Failure of PCD can result in devastating diseases such as cancer, Alzheimer’s and AIDS.

"This work gives us a better understanding of how plants fend off microbial attacks through carefully controlled destruction of infected cells," said James Anderson, of the Division of Genetics and Developmental Biology at the National Institute of General Medical Sciences (NIGMS). "Like other studies carried out in model organisms, these findings shed light on similar processes that occur in mammals, and may eventually be used to better human health."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>