Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological warfare, mad cow disease on UH student’s hit list

13.06.2005


Mrinal Shah develops technology to construct biosensors more quickly

A University of Houston student has made an award-winning breakthrough in biosensors that could help bioterrorism researchers in their ability to quickly and accurately detect toxic biological agents.

Mrinal Shah, a doctoral student in chemical engineering at UH, has developed new methods in the use of biosensors that could provide one of the first steps in developing a protein-based biosensor that would help the government in safeguarding the nation.



Working under the direction of Peter Vekilov, a world-renowned expert in the field of nucleation and a chemical engineering professor at the UH Cullen College of Engineering, Shah employs liquid-liquid phase separation – a technique that is similar to the concept behind how oil and water separate. His research makes use of the proteins needed in biosensors and accurately controls the nucleation of those proteins.

"The development of a successful biosensing chip has potential uses that are manifold and urgently needed with several applications that are immediately significant," Shah said. "If there is biological warfare somewhere, and you put this chip into that environment, you would know exactly what is in that environment, and safety precautions could be taken. That’s the ultimate achievement that every scientist working in protein chips dreams about."

Biosensing chips are already in use for studies such as the quality control of water and checking glucose levels. Shah’s involvement in the biosensing application began with his initial interest in protein nucleation that occurs with diseases such as Parkinson’s, sickle cell anemia and Alzheimer’s. While his methods may prove useful in the early detection of these diseases, Shah said he is not searching for any cures. He said that what basically happens is the protein is normal inside the body, but then suddenly something happens for it to just start nucleating. The protein misfolds, denatures and begins to aggregate together forming into the disease.

"We’re not finding cures ourselves, but we are finding the mechanisms that follow the formations of these fibers," Shah said. "Once we know the mechanism, then we also can know by what methods to reduce the rate of its formation. The physics behind the mechanisms is much more interesting to us."

Shah says there are a number of other applications for the chip, as well, including combating mad cow disease and anthrax.

While working on the initial part of his project – studying the kinetics and the thermodynamics involved to better understand what mechanisms govern the phase separation of nanoscale droplets of protein solution – Shah came up with the idea that could lead to a new potential way of making biosensors that would be fast and easy. He found that control over nucleation is essential to the creation of biosensors.

"It was a difficult project, because we were hoping that one of two approaches would work, and neither of them did," Vekilov said. "We tried electrophoresis and dielectrophoresis and neither worked. But Mrinal kept working, kept trying new things and finally developed his own method. What we discovered is that the solution has a time-dependent, non-uniform electric field, and this is what causes the nucleation."

"The next step will be to tag the protein molecule onto the micro-area electrode," Shah said. "That will be a challenge, but we already have several promising strategies in mind."

Since winning second place at last year’s Keck Annual Research Conference, Shah has been able to replicate his results, using a more widely used biosensing protein – horseradish peroxidase. The W.M. Keck Center for Computational and Structural Biology is designed to unite modern biological, physical and computational sciences in addressing problems in biology and biomedicine. Its six member institutions include UH, Rice University, Baylor College of Medicine, The University of Texas Health Science Center at Houston, The University of Texas Medical Branch at Galveston and The University of Texas M.D. Anderson Cancer Center.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>