Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological warfare, mad cow disease on UH student’s hit list

13.06.2005


Mrinal Shah develops technology to construct biosensors more quickly

A University of Houston student has made an award-winning breakthrough in biosensors that could help bioterrorism researchers in their ability to quickly and accurately detect toxic biological agents.

Mrinal Shah, a doctoral student in chemical engineering at UH, has developed new methods in the use of biosensors that could provide one of the first steps in developing a protein-based biosensor that would help the government in safeguarding the nation.



Working under the direction of Peter Vekilov, a world-renowned expert in the field of nucleation and a chemical engineering professor at the UH Cullen College of Engineering, Shah employs liquid-liquid phase separation – a technique that is similar to the concept behind how oil and water separate. His research makes use of the proteins needed in biosensors and accurately controls the nucleation of those proteins.

"The development of a successful biosensing chip has potential uses that are manifold and urgently needed with several applications that are immediately significant," Shah said. "If there is biological warfare somewhere, and you put this chip into that environment, you would know exactly what is in that environment, and safety precautions could be taken. That’s the ultimate achievement that every scientist working in protein chips dreams about."

Biosensing chips are already in use for studies such as the quality control of water and checking glucose levels. Shah’s involvement in the biosensing application began with his initial interest in protein nucleation that occurs with diseases such as Parkinson’s, sickle cell anemia and Alzheimer’s. While his methods may prove useful in the early detection of these diseases, Shah said he is not searching for any cures. He said that what basically happens is the protein is normal inside the body, but then suddenly something happens for it to just start nucleating. The protein misfolds, denatures and begins to aggregate together forming into the disease.

"We’re not finding cures ourselves, but we are finding the mechanisms that follow the formations of these fibers," Shah said. "Once we know the mechanism, then we also can know by what methods to reduce the rate of its formation. The physics behind the mechanisms is much more interesting to us."

Shah says there are a number of other applications for the chip, as well, including combating mad cow disease and anthrax.

While working on the initial part of his project – studying the kinetics and the thermodynamics involved to better understand what mechanisms govern the phase separation of nanoscale droplets of protein solution – Shah came up with the idea that could lead to a new potential way of making biosensors that would be fast and easy. He found that control over nucleation is essential to the creation of biosensors.

"It was a difficult project, because we were hoping that one of two approaches would work, and neither of them did," Vekilov said. "We tried electrophoresis and dielectrophoresis and neither worked. But Mrinal kept working, kept trying new things and finally developed his own method. What we discovered is that the solution has a time-dependent, non-uniform electric field, and this is what causes the nucleation."

"The next step will be to tag the protein molecule onto the micro-area electrode," Shah said. "That will be a challenge, but we already have several promising strategies in mind."

Since winning second place at last year’s Keck Annual Research Conference, Shah has been able to replicate his results, using a more widely used biosensing protein – horseradish peroxidase. The W.M. Keck Center for Computational and Structural Biology is designed to unite modern biological, physical and computational sciences in addressing problems in biology and biomedicine. Its six member institutions include UH, Rice University, Baylor College of Medicine, The University of Texas Health Science Center at Houston, The University of Texas Medical Branch at Galveston and The University of Texas M.D. Anderson Cancer Center.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>