Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA study opens potential revolution in cancer diagnosis

10.06.2005


Collaborative effort develops novel tool and discovers surprising correlation of microRNA expression and cancer type



Despite significant progress in understanding the genetic changes in many different cancers, diagnosis and classification of tumor type remain, at best, an imperfect art. This could change quickly, thanks to the findings of a group of researchers from the Broad Institute of MIT and Harvard, the Dana-Farber Cancer Institute, MIT, and St. Jude’s Children’s Research Hospital in Memphis, TN.

In the June 9 issue of Nature, the scientists describe two important breakthroughs: (1) a surprisingly accurate correlation of the 217 known human microRNAs (miRNAs – small noncoding RNA molecules that control the levels of proteins made from transcribed genes) with the development and differentation of tumors, and (2) the development of a technology that not only enabled this exciting discovery but that could be the basis for an easy and inexpensive diagnostic test.


"This study opened our eyes to how much more there is to learn about genomic approaches to cancer," said Todd Golub, senior author of the paper. Golub is a core faculty member and director of the Cancer Program at Broad Institute, the Charles A. Dana Investigator in Human Cancer Genetics at the Dana-Farber Cancer Institute, and a Howard Hughes Medical Institute (HHMI) investigator at Harvard Medical School. "That microRNA profiles have such potential diagnostic utility was a big surprise to us, and one we’re keen to validate in future studies."

MiRNAs were first identified in the worm C. elegans, and were shown to control development and differentiation of cells: When absent, certain cells went into abnormal rounds of cell division rather than differentiations. "Since the discovery that microRNAs control specific cell divisions in the nematode C. elegans, I have wondered if there might be a relationship between microRNAs and human cancer," said H. Robert Horvitz, co-author and David H. Koch Professor of Biology at MIT and HHMI investigator at Harvard. "This work establishes a striking correlation between patterns of microRNA expression and cancer and offers the prospect of using microRNA expression patterns to help in the diagnosis and treatment of cancer."

To determine the expression pattern of all the known human miRNAs, the researchers first had to develop an accurate, fast, reproducible and inexpensive method for doing so. Given the small size of miRNA (~21 nucleotides) as well as their close resemblance to each other, previous attempts to use array-type technologies have been unsuccessful. Instead, the scientists developed an ingenious bead-based miRNA capture method, where each individual bead was marked with fluorescence "tags" that could tell which miRNA was bound as well as its abundance in the sample.

Testing a host of tumor samples on the miRNA-specific beads revealed that the expression patterns of miRNA not only correlated with the developmental origins of the tumors samples (e.g., epithelial cell, hematopoietic cell, etc.), but it also subdivided specific tumor types based on known genetic alterations. They also found that miRNA levels are generally lower across tumor types than in the corresponding normal tissue, again supporting the idea that miRNA is critical to reaching and maintaining the differentiated state.

Finally, the researchers tested their discoveries against a panel of tumor samples of histologically uncertain cellular origin (but which had been determined by the anatomical location). Again, the miRNA classification provided amazing accuracy, especially compared techniques relying on messenger RNA (mRNA) expression patterns.

Although this is a preliminary study, its validation could have significant impact on the clinical diagnosis of cancer.

In addition to Golub and Horvitz, authors on the Nature paper "MicroRNA expression profiles classify human cancers" include Gad Getz, Justin Lamb and David Peck from the Broad Institute; Benjamin L. Ebert, Jun Lu and Raymond H. Mak from the Broad Institute and Dana-Farber Cancer Institute, Alejandro Sweet-Cordero from the Broad Institute and the MIT Center for Cancer Research; Eric A. Miska and Ezequiel Alvarez-Saavedra from the Howard Hughes Medical Institute at the Department of Biology at MIT; Tyler Jacks from MIT Center for Cancer Research and the Howard Hughes Medical Institute at the Department of Biology of MIT; Adolfo A. Ferrando from the Dana-Farber Cancer Institute, and; James R. Downing from St. Jude Children’s Research Hospital, Memphis, TN.

Jun Lu, Gad Getz and Eric Miska are listed as co-first authors on the Nature paper.

Michelle Nhuch | EurekAlert!
Further information:
http://www.broad.mit.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>