Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA study opens potential revolution in cancer diagnosis

10.06.2005


Collaborative effort develops novel tool and discovers surprising correlation of microRNA expression and cancer type



Despite significant progress in understanding the genetic changes in many different cancers, diagnosis and classification of tumor type remain, at best, an imperfect art. This could change quickly, thanks to the findings of a group of researchers from the Broad Institute of MIT and Harvard, the Dana-Farber Cancer Institute, MIT, and St. Jude’s Children’s Research Hospital in Memphis, TN.

In the June 9 issue of Nature, the scientists describe two important breakthroughs: (1) a surprisingly accurate correlation of the 217 known human microRNAs (miRNAs – small noncoding RNA molecules that control the levels of proteins made from transcribed genes) with the development and differentation of tumors, and (2) the development of a technology that not only enabled this exciting discovery but that could be the basis for an easy and inexpensive diagnostic test.


"This study opened our eyes to how much more there is to learn about genomic approaches to cancer," said Todd Golub, senior author of the paper. Golub is a core faculty member and director of the Cancer Program at Broad Institute, the Charles A. Dana Investigator in Human Cancer Genetics at the Dana-Farber Cancer Institute, and a Howard Hughes Medical Institute (HHMI) investigator at Harvard Medical School. "That microRNA profiles have such potential diagnostic utility was a big surprise to us, and one we’re keen to validate in future studies."

MiRNAs were first identified in the worm C. elegans, and were shown to control development and differentiation of cells: When absent, certain cells went into abnormal rounds of cell division rather than differentiations. "Since the discovery that microRNAs control specific cell divisions in the nematode C. elegans, I have wondered if there might be a relationship between microRNAs and human cancer," said H. Robert Horvitz, co-author and David H. Koch Professor of Biology at MIT and HHMI investigator at Harvard. "This work establishes a striking correlation between patterns of microRNA expression and cancer and offers the prospect of using microRNA expression patterns to help in the diagnosis and treatment of cancer."

To determine the expression pattern of all the known human miRNAs, the researchers first had to develop an accurate, fast, reproducible and inexpensive method for doing so. Given the small size of miRNA (~21 nucleotides) as well as their close resemblance to each other, previous attempts to use array-type technologies have been unsuccessful. Instead, the scientists developed an ingenious bead-based miRNA capture method, where each individual bead was marked with fluorescence "tags" that could tell which miRNA was bound as well as its abundance in the sample.

Testing a host of tumor samples on the miRNA-specific beads revealed that the expression patterns of miRNA not only correlated with the developmental origins of the tumors samples (e.g., epithelial cell, hematopoietic cell, etc.), but it also subdivided specific tumor types based on known genetic alterations. They also found that miRNA levels are generally lower across tumor types than in the corresponding normal tissue, again supporting the idea that miRNA is critical to reaching and maintaining the differentiated state.

Finally, the researchers tested their discoveries against a panel of tumor samples of histologically uncertain cellular origin (but which had been determined by the anatomical location). Again, the miRNA classification provided amazing accuracy, especially compared techniques relying on messenger RNA (mRNA) expression patterns.

Although this is a preliminary study, its validation could have significant impact on the clinical diagnosis of cancer.

In addition to Golub and Horvitz, authors on the Nature paper "MicroRNA expression profiles classify human cancers" include Gad Getz, Justin Lamb and David Peck from the Broad Institute; Benjamin L. Ebert, Jun Lu and Raymond H. Mak from the Broad Institute and Dana-Farber Cancer Institute, Alejandro Sweet-Cordero from the Broad Institute and the MIT Center for Cancer Research; Eric A. Miska and Ezequiel Alvarez-Saavedra from the Howard Hughes Medical Institute at the Department of Biology at MIT; Tyler Jacks from MIT Center for Cancer Research and the Howard Hughes Medical Institute at the Department of Biology of MIT; Adolfo A. Ferrando from the Dana-Farber Cancer Institute, and; James R. Downing from St. Jude Children’s Research Hospital, Memphis, TN.

Jun Lu, Gad Getz and Eric Miska are listed as co-first authors on the Nature paper.

Michelle Nhuch | EurekAlert!
Further information:
http://www.broad.mit.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>