Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New U. of Colorado polymer has applications for dentistry, electronics, automobiles

10.06.2005


University of Colorado at Boulder researchers have developed a new polymer that resists cracking and shrinking, paving the way for creative breakthroughs in fields ranging from dentistry and microelectronics to the auto industry.



CU-Boulder chemical and biological engineering department Chair Christopher Bowman said polymers, or plastics -- which are made up of identical molecules linked by chemical bonds to form repeating chains or webs -- generally show an increase in strain and stress when they are treated with heat or chemicals to cure them. But the new polymer, which has a complex chemical formula like most polymers, maintains its strength even while showing reduced stress and strain when exposed to light, according to Bowman.

The researchers, who have filed for a patent on the novel polymerization process, said the new process may be ideal for use by dentists, who cure polymer fillings with light rather than high temperatures to achieve the desired strength and shape. Composite cavity-filling materials today have a tendency to shrink and even leak over time as the polymer cracks due to the stresses and becomes more rigid as it sets. This often leads to additional dental problems, he said.


Led by postdoctoral researcher Timothy Scott, the team published a paper on the subject in the June 10 issue of Science. Other authors include Bowman, CU undergraduate Andrew Schneider and Wayne Cook from Monash University in Victoria, Australia. The National Institutes of Health provided funding support for the project.

The new polymer also would be helpful in electronic packaging, the CU researchers said. Electronic processing chips are often sealed in computer "mother boards" with polymers, which may shrink as they cure and cause wires to touch one another, triggering malfunctions.

Polymers are ubiquitous in today’s world and are used to make everything from shampoo bottles, tennis shoes and garden hoses to toilet seats, automobile tires and bowling balls. While the simplest polymers essentially are just large molecules strung together like beads on a string, more complex types, called cross-linked polymers, resemble microscopic mesh netting with individual strands of molecules linked together by chemical bonds, Scott said.

When such polymers are treated with heat or light to cure them, they generally become more rigid and strained as they shrink, said Scott. But when the new CU polymer was treated with UV light, the chemical bonds linking the molecules, or monomers, continually broke and reformed during light exposure, "relaxing" the stress and strain in the polymer as it became more dense.

"It really doesn’t matter how much stress there is, because this process just erases it," said Bowman. "It remains fundamentally the same material, but just changes shape by reforming itself as it adapts to the new conditions. We think this process solves a significant problem in polymer science."

Scott said the original concept for the polymer was followed by intense research by faculty and students in CU-Boulder’s College of Engineering and Applied Science. "It only took about one second to come up with the idea," he said. "But it has taken months to implement it and make it work in the lab."

In addition to dentistry and electronics, Scott and Bowman said the new cross-linked polymer may have applications for boats, automobiles and structural materials, including its use in coatings and adhesives. "This research has plenty of basic science for us to continue investigating it," said Scott. "But we expect it to generate a fair amount of interest in a wide range of industries."

Christopher Bowman | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>