Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers create infectious hepatitis C virus in a test tube


Method enables scientists to study all stages of virus’ life cycle

A team of researchers led by scientists at The Rockefeller University has produced for the first time an infectious form of the hepatitis C virus (HCV) in laboratory cultures of human cells. The finding, reported in the June 9 issue of Science Express, will allow scientists to study every stage of the HCV life cycle and develop drugs to treat this life-threatening disease that affects more than 170 million people around the world. "The inability to reproduce aspects of the hepatitis C virus life cycle in cell culture has slowed research progress on this important human pathogen," says senior author Charles M. Rice, Ph.D., Maurice R. and Corinne P. Greenberg Professor and head of the Laboratory of Virology and Infectious Disease at Rockefeller.

"This system lays the foundation for future test tube studies of the virus life cycle and may help in the development of new drugs for combating HCV," adds Rice, who is the scientific director of the Center for the Study of Hepatitis C, a collaborative research and clinical effort of Rockefeller, Weill Medical College of Cornell University, and New York- Presbyterian Hospital

Like all viruses, HCV cannot replicate by itself; instead it takes over the machinery of a host cell to make copies of itself. Much about the life cycle of HCV remains poorly understood because scientists have been unable to reproduce an infectious form of HCV that they can observe in cell cultures. The method developed by Rice and his colleagues, including scientists at the Massachusetts Institute of Technology and the Scripps Research Institute, changes that. "The hallmark of viruses is their ability to exist in a form outside the host cell capable of infecting new cells," says first author Brett Lindenbach, Ph.D., a postdoctoral fellow in Rice’s lab. "Our method replicates and produces virus particles that can infect new cells, initiating replication in them and leading to the production of more virus particles."

Although little is know about the HCV life cycle, researchers think that in humans the virus enters a liver cell and delivers its RNA and proteins into the cell cytoplasm. HCV carries its genetic information in its RNA, which is separated from the protein, copied, and then joined with new protein components before being released from the liver cell to infect other cells. Lindenbach, Rice and their colleagues named their infectious cell culture virus HCVcc. Already HCVcc is yielding new knowledge about HCV. In a separate set of experiments, the researchers used HCVcc to confirm that a molecule called CD81, which sits on the surface of the human cell membrane, plays a crucial role in the entry of HCV.

Scientists have known that a protein produced by HCV, called E2, binds to CD81, and they believed that this interaction is necessary for the virus to bind to target cells. The Rockefeller researchers showed that CD81 molecules that are not attached to the surface of host cells compete with membrane-bound CD81 and inhibit entry of HCV into the cell. They also showed that HepG2 cells, which do not express CD81 but can support HCV RNA replication, could not be infected by HCVcc unless they express CD81.

Liver failure due to hepatitis C is the leading cause of liver transplants in the United States, and about 25 percent of liver cancer cases in the country are associated with HCV. Although about 85 percent of those who are infected develop chronic infection, the virus usually remains undetected for years, or even decades, until it causes advanced liver disease.

Joseph Bonner | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>