Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several minute intermediate stage in virus-cell fusion discovered; opportunity for drug development

09.06.2005


To ignite a life-threatening infection in the body, a virus such as HIV invades body cells by first merging, or fusing, with the cell’s outer membrane. Once inside the cell, the invading microbe’s genetic material takes over, turning the ’host’ cell into a factory to produce more copies of the virus, which then spill out to invade other cells in the body.



Scientists had assumed that once a virus begins fusing with a cell’s membrane, infection of the host cell was inevitable. Thus, antiviral drug development has largely focused on preventing events that happen either before or after this step.

However, a multi-institutional team of researchers is reporting that it has detected an intermediate stage between the virus’ merger with the cell membrane and the microbe’s delivery of its genetic contents into the cell, when the fate of the host cell still hangs in the balance.


This intermediate stage, which can last several minutes, may represent a window of opportunity for drug development. The remarkable findings, captured on video, were published by the Proceedings of the National Academy of Sciences online on June 3. Biophysicist Gregory Melikyan of Rush University Medical Center in Chicago and microbiologist John Young of the Salk Institute for Biological Studies filmed individual viruses fusing with a host cell membrane. Avian sarcoma and leukosis virus (ASLV), a virus that is in the same class as HIV, was used in the study.

The researchers discovered that once the virus fuses with the host cell membrane the hole, or pore, through which the virus unloads its deadly genetic cargo into the host cell does not open up right away; instead, a small pore can persist for several minutes before adopting its final size, or (in rare cases) closing permanently.

This ’intermediate stage,’ as the scientists describe this time interval, was not known to exist for virus-cell fusion events. The net effect is that the invading virus is held up for a significant amount of time and, in the rare cases in which the pore does not open, it fails to infect the cell at all.

"It’s like a space craft docking on a space station," said Young. "If you try to open the inner door before the pressures have equalized, you can tease it open a little bit but it keeps closing on you until there’s enough pressure in the airlock to allow it to open all the way."

Melikyan explained, "The pore is an unstable structure at that moment: some pores will open and some won’t. It’s a crucial point in viral entry because it’s critical for the pore to enlarge sufficiently for the genetic material to pass into the host cell."

The researchers are excited by this study because even a brief pause during the process by which a virus invades a cell provides a possible new drug target in the fight against HIV and other similar microbes.

"Our experimental system does pause frequently for hundreds of seconds," said Melikyan. "How this happens in real life is hard to say.

"But our model," he added, "is likely to apply to any virus such as HIV that fuses with the cell membrane and shares the same fusion proteins, so it certainly provides a new target. Also, existing drugs can be re-evaluated to pinpoint at what stage they actually work, to fine-tune their activity."

The experimental set-up for this study was devised by Young and Melikyan last year to investigate viral infection in a manner as close to ’real life’ as possible. The researchers filmed the microscopic viruses, which are only 100 nanometers across, by labeling them with fluorescent dyes and recording at one frame every 7 seconds. (For comparison purposes, a human hair is 80,000 nanometers thick.) ASLV is a useful model for several viruses, including Ebola, the ’flu, and measles, as well as HIV.

"This system is especially well suited for these types of studies because the fusion mechanism of this virus can be finely manipulated and monitored in the lab, allowing for an exquisite level of control of the whole process," said Young. "This allows us to do things that are not possible with other systems."

The next stage is for researchers to confirm that other viruses such as HIV also have an intermediate step. Preliminary data from the Melikyan laboratory indicate that this may be the case for HIV. "We already know that the entire HIV fusion sequence is very slow, sometimes taking several hours," said Melikyan. "It is not inconceivable that it, too, has an intermediate step that lasts several minutes, giving us an adequate time window for drug action."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>