Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Several minute intermediate stage in virus-cell fusion discovered; opportunity for drug development


To ignite a life-threatening infection in the body, a virus such as HIV invades body cells by first merging, or fusing, with the cell’s outer membrane. Once inside the cell, the invading microbe’s genetic material takes over, turning the ’host’ cell into a factory to produce more copies of the virus, which then spill out to invade other cells in the body.

Scientists had assumed that once a virus begins fusing with a cell’s membrane, infection of the host cell was inevitable. Thus, antiviral drug development has largely focused on preventing events that happen either before or after this step.

However, a multi-institutional team of researchers is reporting that it has detected an intermediate stage between the virus’ merger with the cell membrane and the microbe’s delivery of its genetic contents into the cell, when the fate of the host cell still hangs in the balance.

This intermediate stage, which can last several minutes, may represent a window of opportunity for drug development. The remarkable findings, captured on video, were published by the Proceedings of the National Academy of Sciences online on June 3. Biophysicist Gregory Melikyan of Rush University Medical Center in Chicago and microbiologist John Young of the Salk Institute for Biological Studies filmed individual viruses fusing with a host cell membrane. Avian sarcoma and leukosis virus (ASLV), a virus that is in the same class as HIV, was used in the study.

The researchers discovered that once the virus fuses with the host cell membrane the hole, or pore, through which the virus unloads its deadly genetic cargo into the host cell does not open up right away; instead, a small pore can persist for several minutes before adopting its final size, or (in rare cases) closing permanently.

This ’intermediate stage,’ as the scientists describe this time interval, was not known to exist for virus-cell fusion events. The net effect is that the invading virus is held up for a significant amount of time and, in the rare cases in which the pore does not open, it fails to infect the cell at all.

"It’s like a space craft docking on a space station," said Young. "If you try to open the inner door before the pressures have equalized, you can tease it open a little bit but it keeps closing on you until there’s enough pressure in the airlock to allow it to open all the way."

Melikyan explained, "The pore is an unstable structure at that moment: some pores will open and some won’t. It’s a crucial point in viral entry because it’s critical for the pore to enlarge sufficiently for the genetic material to pass into the host cell."

The researchers are excited by this study because even a brief pause during the process by which a virus invades a cell provides a possible new drug target in the fight against HIV and other similar microbes.

"Our experimental system does pause frequently for hundreds of seconds," said Melikyan. "How this happens in real life is hard to say.

"But our model," he added, "is likely to apply to any virus such as HIV that fuses with the cell membrane and shares the same fusion proteins, so it certainly provides a new target. Also, existing drugs can be re-evaluated to pinpoint at what stage they actually work, to fine-tune their activity."

The experimental set-up for this study was devised by Young and Melikyan last year to investigate viral infection in a manner as close to ’real life’ as possible. The researchers filmed the microscopic viruses, which are only 100 nanometers across, by labeling them with fluorescent dyes and recording at one frame every 7 seconds. (For comparison purposes, a human hair is 80,000 nanometers thick.) ASLV is a useful model for several viruses, including Ebola, the ’flu, and measles, as well as HIV.

"This system is especially well suited for these types of studies because the fusion mechanism of this virus can be finely manipulated and monitored in the lab, allowing for an exquisite level of control of the whole process," said Young. "This allows us to do things that are not possible with other systems."

The next stage is for researchers to confirm that other viruses such as HIV also have an intermediate step. Preliminary data from the Melikyan laboratory indicate that this may be the case for HIV. "We already know that the entire HIV fusion sequence is very slow, sometimes taking several hours," said Melikyan. "It is not inconceivable that it, too, has an intermediate step that lasts several minutes, giving us an adequate time window for drug action."

Cathy Yarbrough | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>