Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein provides hope for new medicines to lower cholesterol

09.06.2005


An international research team has discovered a new target molecule, Fbw7, for developing drugs with the potential to complement or replace statins in the treatment of cardiovascular diseases. The findings are being published in the new issue of the scientific journal Cell Metabolism.



Cholesterol is a fat-like substance that is needed for the formation of our cells and for the production of hormones. The amount needed can be provided by the body itself, but our eating habits often lead to too much cholesterol. The surplus is stored in the walls of our vessels, thereby increasing the risk of cardiovascular disorders, the most common cause of death in the Western world. What‚s more, individuals with cardiovascular diseases run a greater risk of being overweight and contracting diabetes.

The protein SREBP regulates the genes that control the amount of cholesterol and other fats in cells. SREBP‚s ability to regulate the new production, metabolism, and uptake of cholesterol from the blood is extremely important in the liver, where huge quantities of cholesterol are absorbed and rendered harmless. SREBP is therefore a suitable target molecule for the development of new drugs for cardiovascular diseases, overweight, and diabetes.


The most common medicinal treatment for heightened levels of cholesterol today is a group of drugs called statins. These drugs activate SREBP and thus enhance the capacity of the liver to render cholesterol harmless. However, in high doses, statins can have side effects, since they also block the new production of necessary cholesterol in other cells in the body.

The useful effect takes place primarily in the liver‚s uptake from the blood, explains Johan Ericsson from the Ludwig Institute, Uppsala University, who led the study in collaboration with Harvard Medical School.

His team discovered in their molecular studies of the protein SREBP that it had a binding point that ought to suit the protein Fbw7, which had been identified by the Harvard researchers. It turned out that Fbw7 inhibited the metabolism of fat by breaking down SREBP. Consequently, inactivating Fbw7 led to greater amounts of SREBP and increased uptake of cholesterol.

Now we need to look more closely at the mechanisms behind the interaction between these two molecules. Fbw7 also has other important functions in the cell, so the goal is to be able to knock out its effect on SREBP only, says Johan Ericsson.

Anneli Waara | alfa
Further information:
http://www.cellmetabolism.org/content/current

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>