Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation in Mouse Circulatory Gene That Mimics A Form of Congenital Heart Disease

08.06.2005



Mutations in a critical gene that controls heart and blood vessel development in mouse embryos mimics a type of congenital heart disease in humans, according to new research led by Michael S. Parmacek, MD, Director of the Penn Cardiovascular Institute at the University of Pennsylvania School of Medicine. Congenital heart disease (CHD) occurs in approximately one in one hundred newborn infants. Knowing the basic genetic causes of congenital heart disease will allow for the development of CHD prenatal diagnosis, as well as treatments to prevent or correct infant and adult heart disease.

Using genetically engineered mice, the researchers found that mice with a mutation in the gene for myocardin-related transcription factor B (MRTF-B) had defects in developing arteries associated with the embryonic heart. Specifically, these mice had a variation of a childhood condition known as a truncus arteriosis defect, a relatively rare form of CHD that occurs in infants in which the aorta does not appropriately separate from the pulmonary artery. (Click on thumbnail above to view full-size image). As a result, oxygenated and deoxygenated blood mix, resulting in insufficient amounts of oxygen being transported to tissues. This causes cyanosis, which is commonly referred to as “blue babies.” Senior author Parmacek and his colleagues published their findings in this week’s early online edition of the Proceedings of the National Academy of Sciences.

Using the gene itself as a marker, the researchers confirmed that the problems in the mouse blood vessels originated from defects in the cardiac neural crest cells, stem cells that migrate from regions of the brain to the heart in developing embryos. These cells populate the heart and eventually differentiate into the smooth muscle cells of the major blood vessels.



“When we looked at the embryonic heart and great arteries during early development in the mice, we saw a variety of defects in the major arteries, suggesting defective patterning of the newly formed blood vessels, including the pulmonary artery, the carotid artery, and the aorta,” notes Parmacek. “These were all consistent with the defects observed later on that caused the embryos not to survive after birth.”

Overall, the researchers demonstrated that the cardiac neural crest cells that originate in the brain do migrate to the heart and outflow tract areas; but, unlike in normal mice, the cells with mutations did not differentiate into smooth muscle cells. As a result, the cells did not form the structure that separates the aorta from the pulmonary artery. “This is the first evidence that a block in stem-cell differentiation is responsible for forms of congenital heart disease,” says Parmacek. “Understanding how MRTF-B works will let us see how this critical junction in the development of the circulatory system regulates how tissues unfold downstream.”

The study was funded in part by the National Institutes of Health. Penn study co-authors are Jian Li, Xiaohong Zhu, Mary Chen, Lan Cheng, Deying Zhou, MinMin Lu, Kevin Du, and Jonathan A. Epstein.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>