Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian geckos show surprising strengths

08.06.2005


Usually when you give up something, there’s a price to pay. Not so in the case of the Australian Bynoe’s gecko. This line of all-female geckos doesn’t need sex or a male to reproduce and, contrary to expectations, these “Wonder Woman” geckos can run farther and faster than their sexually reproducing relatives. The research findings are published in the journal Physiological and Biochemical Zoology (Vol. 78, 3, May/June 2005) by Michael Kearney, Rebecca Wahl and Kellar Autumn.
“This is extraordinary,” said Autumn, associate professor of biology at Lewis & Clark College and member of the research team. “The traditional theory is that when a species gives up sex and reproduces through cloning, the offspring will have reduced performance.”

Parthenogenetic creatures are all-female species. Their “clonal” way of reproducing means that a mother’s babies are genetically identical to her. A further twist to the story is that many parthenogentic species, including the Bynoe’s gecko, evolved when two species crossed, or hybridized, said Michael Kearney. He is a postdoctoral research fellow in the Centre for Environmental Stress and Adaptation Research at the University of Melbourne in Australia. Kearney’s interest in geckos started during his undergraduate years in Australia. As a Fulbright Graduate Fellow, Kearney studied with Autumn at Lewis & Clark College.


“This makes them a bit like mules, which are a cross between a horse and a donkey,” said Kearney. “Mules are very robust animals, but they cannot reproduce.” Kearney’s research suggested that the hybrid forms of Bynoe’s geckos could not only reproduce through parthenogenesis, but were “super tough,” just like a mule.

Kearney shipped Bynoe’s geckos from Sydney, Australia to Autumn’s research lab in Portland, Oregon. There, Kearney, Autumn and Rebecca Wahl put the lizards through their paces on a state-of-the-art lizard treadmill. As the geckos walked in the lab at Lewis & Clark, the researchers precisely controlled the lizard’s speed, body temperature, and measured how much energy the four-footers used to walk. Wahl, an alumna of Lewis & Clark, is now a doctoral student in wildlife biology at the University of Montana at Missoula.

“We found that the parthenogenetic forms were much better athletes than the sexual forms, clearly outpacing them on the treadmill,” said Kearney. “This was a bit of a surprise because a similar study of another kind of parthenogenetic lizard from the deserts of the United States showed the opposite pattern.”

Added Autumn: “If there was an Olympic team of Bynoe’s geckos, there wouldn’t be a single male on it. These geckos outperform their sexual relatives by 50 percent. They are the ‘Xena: Warrior Princess’ of the lizard world.”

The Fulbright exchange program supported the team’s research.

Tania Thompson | EurekAlert!
Further information:
http://www.lclark.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>