Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One-Way Street or Two-Way Traffic – How Enzymes adjust to the environmental conditions in the cell


More effective and safer medicines will be possible if we understand how the body detoxifies itself. The cytochrome P450 enzymes are the molecular machines responsible for the disposal by the human body of 80% of all medicines. These enzymes are also needed for the body to remove poisons and to manufacture many important molecules such as the sex hormones progesterone and testosterone. Understanding how the cytochromes P450 function is of great importance for human health.

New insight into how this family of enzymes functions has been provided by scientists at EML Research, in Heidelberg, Germany. Using computers to simulate how a mammalian cytochrome P450 interacts with chemicals such as progesterone, they now have an understanding of the ways into and out of the center of this protein. The functional part of the cytochromes P450 is buried in their centre, so understanding chemical access is critical to understanding the enzyme’s function. The new simulations show a channel that is different to those seen in the cytochromes P450 found in bacteria. However, the researchers propose that the mammalian enzyme may use the newly discovered channel and the channel seen in the bacterial enzymes, depending upon its cellular environment and the chemical compound that is entering it.

The scientists at EML Research propose two mechanisms in the newly investigated cytochrome P450: (1), a ‘one-way’ route whereby fat-soluble (lipophilic) substrates enter the enzyme from the membrane, and products leave the active site, via the newly discovered channel, directly into solvent; and (2) a ‘two-way’ route for access and egress of water-soluble compounds solely via the new channel. The proposed differences in the substrate access and product egress routes between the mammalian and bacterial cytochromes P450 highlights the adaptability of the P450 family to the requirements of different cellular locations and substrate specificity profiles.

The article (with videoclips from the simulations in the online-version) is published in: EMBO Reports, (2005) 6, 6, 584–589. doi:10.1038/sj.embor.7400420. Karin Schleinkofer, Sudarko, Peter J. Winn, Susanne K. Lüdemann, Rebecca C. Wade: Do mammalian cytochrome P450 show multiple ligand access pathways and ligand channeling?

The EML Research gGmbH ( is a non-profit institute conducting research in Information Technology and its applications. A strong focus is set on bioinformatics. Research is carried out in close collaboration with universities and other research institutes. EML Research projects are supported by the Klaus Tschira Foundation (KTS) (, as well as by the European Union, the German Ministry of Research and Education (BMBF) and by the German Research Foundation (DFG). EML Research is a partner in the first German Center for Modeling and Simulation in the Biosciences (BIOMS, KTS and EML Research are housed in the Villa Bosch in Heidelberg, the former residence of Nobel Prize laureate Carl Bosch (1874 – 1940).

Rebecca Wade | alfa
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>