Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-Way Street or Two-Way Traffic – How Enzymes adjust to the environmental conditions in the cell

08.06.2005


More effective and safer medicines will be possible if we understand how the body detoxifies itself. The cytochrome P450 enzymes are the molecular machines responsible for the disposal by the human body of 80% of all medicines. These enzymes are also needed for the body to remove poisons and to manufacture many important molecules such as the sex hormones progesterone and testosterone. Understanding how the cytochromes P450 function is of great importance for human health.



New insight into how this family of enzymes functions has been provided by scientists at EML Research, in Heidelberg, Germany. Using computers to simulate how a mammalian cytochrome P450 interacts with chemicals such as progesterone, they now have an understanding of the ways into and out of the center of this protein. The functional part of the cytochromes P450 is buried in their centre, so understanding chemical access is critical to understanding the enzyme’s function. The new simulations show a channel that is different to those seen in the cytochromes P450 found in bacteria. However, the researchers propose that the mammalian enzyme may use the newly discovered channel and the channel seen in the bacterial enzymes, depending upon its cellular environment and the chemical compound that is entering it.

The scientists at EML Research propose two mechanisms in the newly investigated cytochrome P450: (1), a ‘one-way’ route whereby fat-soluble (lipophilic) substrates enter the enzyme from the membrane, and products leave the active site, via the newly discovered channel, directly into solvent; and (2) a ‘two-way’ route for access and egress of water-soluble compounds solely via the new channel. The proposed differences in the substrate access and product egress routes between the mammalian and bacterial cytochromes P450 highlights the adaptability of the P450 family to the requirements of different cellular locations and substrate specificity profiles.


The article (with videoclips from the simulations in the online-version) is published in: EMBO Reports, (2005) 6, 6, 584–589. doi:10.1038/sj.embor.7400420. Karin Schleinkofer, Sudarko, Peter J. Winn, Susanne K. Lüdemann, Rebecca C. Wade: Do mammalian cytochrome P450 show multiple ligand access pathways and ligand channeling?

The EML Research gGmbH (http://www.eml.research.de) is a non-profit institute conducting research in Information Technology and its applications. A strong focus is set on bioinformatics. Research is carried out in close collaboration with universities and other research institutes. EML Research projects are supported by the Klaus Tschira Foundation (KTS) (http://www.kts.villa-bosch.de), as well as by the European Union, the German Ministry of Research and Education (BMBF) and by the German Research Foundation (DFG). EML Research is a partner in the first German Center for Modeling and Simulation in the Biosciences (BIOMS, www.bioms.de). KTS and EML Research are housed in the Villa Bosch in Heidelberg, the former residence of Nobel Prize laureate Carl Bosch (1874 – 1940).

Rebecca Wade | alfa
Further information:
http://www.eml-research.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>