Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One-Way Street or Two-Way Traffic – How Enzymes adjust to the environmental conditions in the cell

08.06.2005


More effective and safer medicines will be possible if we understand how the body detoxifies itself. The cytochrome P450 enzymes are the molecular machines responsible for the disposal by the human body of 80% of all medicines. These enzymes are also needed for the body to remove poisons and to manufacture many important molecules such as the sex hormones progesterone and testosterone. Understanding how the cytochromes P450 function is of great importance for human health.



New insight into how this family of enzymes functions has been provided by scientists at EML Research, in Heidelberg, Germany. Using computers to simulate how a mammalian cytochrome P450 interacts with chemicals such as progesterone, they now have an understanding of the ways into and out of the center of this protein. The functional part of the cytochromes P450 is buried in their centre, so understanding chemical access is critical to understanding the enzyme’s function. The new simulations show a channel that is different to those seen in the cytochromes P450 found in bacteria. However, the researchers propose that the mammalian enzyme may use the newly discovered channel and the channel seen in the bacterial enzymes, depending upon its cellular environment and the chemical compound that is entering it.

The scientists at EML Research propose two mechanisms in the newly investigated cytochrome P450: (1), a ‘one-way’ route whereby fat-soluble (lipophilic) substrates enter the enzyme from the membrane, and products leave the active site, via the newly discovered channel, directly into solvent; and (2) a ‘two-way’ route for access and egress of water-soluble compounds solely via the new channel. The proposed differences in the substrate access and product egress routes between the mammalian and bacterial cytochromes P450 highlights the adaptability of the P450 family to the requirements of different cellular locations and substrate specificity profiles.


The article (with videoclips from the simulations in the online-version) is published in: EMBO Reports, (2005) 6, 6, 584–589. doi:10.1038/sj.embor.7400420. Karin Schleinkofer, Sudarko, Peter J. Winn, Susanne K. Lüdemann, Rebecca C. Wade: Do mammalian cytochrome P450 show multiple ligand access pathways and ligand channeling?

The EML Research gGmbH (http://www.eml.research.de) is a non-profit institute conducting research in Information Technology and its applications. A strong focus is set on bioinformatics. Research is carried out in close collaboration with universities and other research institutes. EML Research projects are supported by the Klaus Tschira Foundation (KTS) (http://www.kts.villa-bosch.de), as well as by the European Union, the German Ministry of Research and Education (BMBF) and by the German Research Foundation (DFG). EML Research is a partner in the first German Center for Modeling and Simulation in the Biosciences (BIOMS, www.bioms.de). KTS and EML Research are housed in the Villa Bosch in Heidelberg, the former residence of Nobel Prize laureate Carl Bosch (1874 – 1940).

Rebecca Wade | alfa
Further information:
http://www.eml-research.de

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>