Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying glial cells in the roundworm may provide insight into human brain diseases

07.06.2005


The key to understanding our brains may lie within a one-millimeter long worm, new research from Rockefeller University indicates. Reporting in the June issue of Developmental Cell, Shai Shaham, Ph.D., and graduate student Elliot Perens use the roundworm, C. elegans, to investigate the mysterious glial cell, which makes up 90 percent of the human brain and, when it malfunctions, can contribute to diseases like Parkinson’s disease and schizophrenia.



Studying glial cells is technically difficult as they are essential for neuronal cell survival: disturbing them in any way puts the organism’s life in jeopardy. Shaham and Perens show that worms are the perfect model system to study the function of these cells in the nervous system, because the glial cells can be manipulated and the neurons still form and function, though not entirely as normal.

"Glial cells have been traditionally hard to study in vertebrates because it is difficult to ask how they influence neurons beyond how they affect a neuron’s survival," says Shaham, head of the Strang Laboratory of Developmental Genetics. "This is the first paper to take a serious crack at glial cells in C. elegans. It shows that the worm really is a great system in which to study glial cells, because we are able to get the kind of answers that could help us understand how they are functioning in the human brain."


The story began 30 years ago with the daf-6 mutant worm, the sixth type of mutant worm found that was defective in dauer formation. Dauer is when worms enter a kind of suspended animation state because of overcrowding or starvation. Research by other scientists hinted that the mutation in this daf-6 worm was involved in glial cell development, but no one designed experiments to directly ask, and the mutant was forgotten.

"We had this mutant worm that nobody had looked at in more than 15 years," says Perens, an M.D.-Ph.D. student in Shaham’s lab. "We started with the knowledge that it was somehow affecting glial cells. From there, we tried to determine what was actually wrong with the glial cells in this mutant worm, and we found that they don’t form properly."

Worms have a pair of neuron bundles in their heads, each with eight neurons reserved for senses such as taste and smell. Each bundle of neurons works by extending through a small tube in the head of the worm, like a nostril, that is open to the outside environment. The glial cells wrap around the neurons to create the tube and protect the neuronal endings. In daf-6 mutants, the glial cells don’t make the tube properly and the neurons have no connection with the outside world. It’s as if their nostrils are plugged, and the worms have no sense of smell or taste.

"At the surface of any cell, the amount of membrane added to the surface, and the amount taken away, are equal, so the cell stays the same in size," says Shaham. "To generate a tube, you still need to add membrane to the surface. However, in order to help the tube grow, you also need to make sure that no membrane is taken away, so there is a net increase of membrane at the cell surface."

Perens and Shaham think that the DAF-6 protein is involved in making sure that membrane isn’t taken away from the surface. Another protein, CHE-14, seems to be responsible for adding the membrane. If both the daf-6 and che-14 genes are mutated, not only is the glial tube not formed, but all other organs in the worm that are made up of tubes, such as the intestine and kidneys, are disrupted.

Perens also observed that the neurons are important to give instructions to the glial cells when they are forming into the tube. When the neurons are disrupted, the DAF-6 protein doesn’t end up in the right place, making Perens and Shaham think that there is some cross-talk going on between the glial cell and the neurons.

"The neuronal endings are telling the glial cell how big to make the tube and what its proper dimensions should be," says Perens. "So the neurons need the glia, and the glia need the neurons in order for the whole structure to be formed properly."

In big picture terms, this process is also very similar to the process of myelination, which is critical for neuron function in human beings, says Shaham. Myelination, when glial cells form an insulating layer of specialized cell membrane that wraps around neurons in the brain, ensures smooth nerve impulses through its insulation. Loss of myelination can cause many problems, and is the cause of multiple sclerosis.

"You have a neuronal ending that becomes surrounded by a glial cell," says Shaham. "There is a little bit known about the late stages in myelination, but these discoveries could give us an insight abut how the whole process is initiated."

The protein made by the daf-6 gene is related to a gene called patched, encoding a receptor protein, which is the most common gene mutated in medulloblastomas, a major form of brain cancer found in children. The DAF-6 branch of this family of proteins seems to be conserved throughout many different organisms, but roles for the conserved proteins haven’t been studied. Perens plans to see if the DAF-6 protein is made in the glial cells of other organisms, such as fruit flies and mice, to determine if it is acting in a similar way.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>