Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying glial cells in the roundworm may provide insight into human brain diseases

07.06.2005


The key to understanding our brains may lie within a one-millimeter long worm, new research from Rockefeller University indicates. Reporting in the June issue of Developmental Cell, Shai Shaham, Ph.D., and graduate student Elliot Perens use the roundworm, C. elegans, to investigate the mysterious glial cell, which makes up 90 percent of the human brain and, when it malfunctions, can contribute to diseases like Parkinson’s disease and schizophrenia.



Studying glial cells is technically difficult as they are essential for neuronal cell survival: disturbing them in any way puts the organism’s life in jeopardy. Shaham and Perens show that worms are the perfect model system to study the function of these cells in the nervous system, because the glial cells can be manipulated and the neurons still form and function, though not entirely as normal.

"Glial cells have been traditionally hard to study in vertebrates because it is difficult to ask how they influence neurons beyond how they affect a neuron’s survival," says Shaham, head of the Strang Laboratory of Developmental Genetics. "This is the first paper to take a serious crack at glial cells in C. elegans. It shows that the worm really is a great system in which to study glial cells, because we are able to get the kind of answers that could help us understand how they are functioning in the human brain."


The story began 30 years ago with the daf-6 mutant worm, the sixth type of mutant worm found that was defective in dauer formation. Dauer is when worms enter a kind of suspended animation state because of overcrowding or starvation. Research by other scientists hinted that the mutation in this daf-6 worm was involved in glial cell development, but no one designed experiments to directly ask, and the mutant was forgotten.

"We had this mutant worm that nobody had looked at in more than 15 years," says Perens, an M.D.-Ph.D. student in Shaham’s lab. "We started with the knowledge that it was somehow affecting glial cells. From there, we tried to determine what was actually wrong with the glial cells in this mutant worm, and we found that they don’t form properly."

Worms have a pair of neuron bundles in their heads, each with eight neurons reserved for senses such as taste and smell. Each bundle of neurons works by extending through a small tube in the head of the worm, like a nostril, that is open to the outside environment. The glial cells wrap around the neurons to create the tube and protect the neuronal endings. In daf-6 mutants, the glial cells don’t make the tube properly and the neurons have no connection with the outside world. It’s as if their nostrils are plugged, and the worms have no sense of smell or taste.

"At the surface of any cell, the amount of membrane added to the surface, and the amount taken away, are equal, so the cell stays the same in size," says Shaham. "To generate a tube, you still need to add membrane to the surface. However, in order to help the tube grow, you also need to make sure that no membrane is taken away, so there is a net increase of membrane at the cell surface."

Perens and Shaham think that the DAF-6 protein is involved in making sure that membrane isn’t taken away from the surface. Another protein, CHE-14, seems to be responsible for adding the membrane. If both the daf-6 and che-14 genes are mutated, not only is the glial tube not formed, but all other organs in the worm that are made up of tubes, such as the intestine and kidneys, are disrupted.

Perens also observed that the neurons are important to give instructions to the glial cells when they are forming into the tube. When the neurons are disrupted, the DAF-6 protein doesn’t end up in the right place, making Perens and Shaham think that there is some cross-talk going on between the glial cell and the neurons.

"The neuronal endings are telling the glial cell how big to make the tube and what its proper dimensions should be," says Perens. "So the neurons need the glia, and the glia need the neurons in order for the whole structure to be formed properly."

In big picture terms, this process is also very similar to the process of myelination, which is critical for neuron function in human beings, says Shaham. Myelination, when glial cells form an insulating layer of specialized cell membrane that wraps around neurons in the brain, ensures smooth nerve impulses through its insulation. Loss of myelination can cause many problems, and is the cause of multiple sclerosis.

"You have a neuronal ending that becomes surrounded by a glial cell," says Shaham. "There is a little bit known about the late stages in myelination, but these discoveries could give us an insight abut how the whole process is initiated."

The protein made by the daf-6 gene is related to a gene called patched, encoding a receptor protein, which is the most common gene mutated in medulloblastomas, a major form of brain cancer found in children. The DAF-6 branch of this family of proteins seems to be conserved throughout many different organisms, but roles for the conserved proteins haven’t been studied. Perens plans to see if the DAF-6 protein is made in the glial cells of other organisms, such as fruit flies and mice, to determine if it is acting in a similar way.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>