Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito study shows new, faster way West Nile can spread

07.06.2005


Researchers at the University of Texas Medical Branch at Galveston (UTMB) have discovered a quick new way that mosquitoes can pass West Nile virus to each other. The new study challenges fundamental assumptions about the virus’ transmission cycle and may help explain why it spread so rapidly across North America despite experts’ predictions that it would progress more slowly or even die out. In the conventional understanding of West Nile transmission, mosquitoes acquire the virus when they bite birds with high levels of virus (or "high viremia.") in their blood. Those levels are reached several days after the birds are initially infected by other mosquitoes. But experiments at UTMB show that when infected and uninfected mosquitoes feed simultaneously on previously uninfected laboratory mice, the virus can pass from mosquito to mosquito within an hour.



"We were amazed to see that it could happen," said UTMB associate professor Stephen Higgs, lead author of a paper on the discovery that will be published online in the Proceedings of the National Academy of Sciences the week of June 6. "It is basically a brand-new component of the virus’ life cycle."

In the paper, Higgs and his co-authors--UTMB graduate student Bradley S. Schneider, senior research associate Dana Vanlandingham, research assistant Kimberly A. Klingler and Ernest A. Gould of the United Kingdom’s Centre for Ecology and Hydrology--note that although such "non-viremic transmission" (that is, transmission before virus can be detected in the blood) has been observed in cases involving viruses transmitted by ticks, it has never before been documented in a virus carried by mosquitoes.


To determine whether West Nile virus could be transmitted non-viremically, the researchers placed an anesthetized, uninfected lab mouse on a mesh-topped container holding infected "donor" mosquitoes, which fed on the mouse through the mesh. Five minutes later, they moved a second mesh-topped container in position so that its uninfected "recipient" mosquitoes could feed on the same mouse, allowing the simultaneous feeding by infected and uninfected mosquitoes to continue for an hour. In repeated experiments, tests revealed that between 2 and 6 percent of the recipient mosquitoes acquired the virus. In one trial, a single bite from a donor mosquito was sufficient to infect two out of 87 recipient mosquitoes.

The discovery calls into question the current conception of mosquito transmission of West Nile virus and possibly other viruses such as the one that causes dengue fever. According to that theory, many vertebrates were considered to be "dead-end hosts" that did not pass along the virus. Only birds, which develop much higher levels of the West Nile virus in their blood, were thought capable of passing it on to uninfected mosquitoes.

"None of the models that have attempted to predict the spread of West Nile virus take into account the possibility that mammals such as horses may be involved in the proliferation of this virus. Direct transfer of virus from the infected mosquitoes that initially feed on them to others that feed on them afterwards, could significantly accelerate the spread of the disease," Higgs said. "Instead of only birds infecting mosquitoes, all sorts of animals may be involved, and transmission could be happening much faster because you don’t have to wait for a high viremia."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>