Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito study shows new, faster way West Nile can spread

07.06.2005


Researchers at the University of Texas Medical Branch at Galveston (UTMB) have discovered a quick new way that mosquitoes can pass West Nile virus to each other. The new study challenges fundamental assumptions about the virus’ transmission cycle and may help explain why it spread so rapidly across North America despite experts’ predictions that it would progress more slowly or even die out. In the conventional understanding of West Nile transmission, mosquitoes acquire the virus when they bite birds with high levels of virus (or "high viremia.") in their blood. Those levels are reached several days after the birds are initially infected by other mosquitoes. But experiments at UTMB show that when infected and uninfected mosquitoes feed simultaneously on previously uninfected laboratory mice, the virus can pass from mosquito to mosquito within an hour.



"We were amazed to see that it could happen," said UTMB associate professor Stephen Higgs, lead author of a paper on the discovery that will be published online in the Proceedings of the National Academy of Sciences the week of June 6. "It is basically a brand-new component of the virus’ life cycle."

In the paper, Higgs and his co-authors--UTMB graduate student Bradley S. Schneider, senior research associate Dana Vanlandingham, research assistant Kimberly A. Klingler and Ernest A. Gould of the United Kingdom’s Centre for Ecology and Hydrology--note that although such "non-viremic transmission" (that is, transmission before virus can be detected in the blood) has been observed in cases involving viruses transmitted by ticks, it has never before been documented in a virus carried by mosquitoes.


To determine whether West Nile virus could be transmitted non-viremically, the researchers placed an anesthetized, uninfected lab mouse on a mesh-topped container holding infected "donor" mosquitoes, which fed on the mouse through the mesh. Five minutes later, they moved a second mesh-topped container in position so that its uninfected "recipient" mosquitoes could feed on the same mouse, allowing the simultaneous feeding by infected and uninfected mosquitoes to continue for an hour. In repeated experiments, tests revealed that between 2 and 6 percent of the recipient mosquitoes acquired the virus. In one trial, a single bite from a donor mosquito was sufficient to infect two out of 87 recipient mosquitoes.

The discovery calls into question the current conception of mosquito transmission of West Nile virus and possibly other viruses such as the one that causes dengue fever. According to that theory, many vertebrates were considered to be "dead-end hosts" that did not pass along the virus. Only birds, which develop much higher levels of the West Nile virus in their blood, were thought capable of passing it on to uninfected mosquitoes.

"None of the models that have attempted to predict the spread of West Nile virus take into account the possibility that mammals such as horses may be involved in the proliferation of this virus. Direct transfer of virus from the infected mosquitoes that initially feed on them to others that feed on them afterwards, could significantly accelerate the spread of the disease," Higgs said. "Instead of only birds infecting mosquitoes, all sorts of animals may be involved, and transmission could be happening much faster because you don’t have to wait for a high viremia."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>