Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkeys understand numbers across senses

07.06.2005


Monkeys can match the number of voices they hear to the number of faces they expect to see, Duke University scientists have found. The finding indicates that numerical perception is truly an abstract concept and not just a function of a particular sense, said the researchers. The experimental approach also will lead to further studies exploring whether human infants, before they have a verbal capacity, understand similar abstract numerical concepts, they said.



The researchers, led by Elizabeth Brannon of Duke University and Asif Ghazanfar of Princeton University, published their findings in the June 7, 2005, issue of Current Biology. Brannon is in the Center for Cognitive Neuroscience and the Department of Psychological and Brain Sciences. Lead author on the paper was graduate student Kerry Jordan in Brannon’s laboratory; and Nikos Logothetis of the Max Planck Institute for Biological Cybernetics in Germany was a co-author. The research was sponsored by The National Institute of Child Health and Development, the John Merck Fund, the Max Planck Society and a National Science Foundation graduate fellowship.

In their experiments, the researchers played rhesus monkeys the sound of natural "coo" calls made by unfamiliar monkeys, either with two or three animals making the calls. At the same time they gave the monkeys a choice to look at video images of either two or three monkeys. The researchers found that the monkeys overwhelmingly chose to look at video images that matched the number of monkeys they were hearing. This result is consistent with previous studies that both animals and infants tend to look preferentially at a visual stimulus that matches the sound they are hearing.


According to Brannon, previous studies had yielded conflicting results regarding whether perception of numerical values by nonhuman animals or human infants was tied to the sense used to perceive the number. To resolve the question, said Brannon, the researchers decided to design an experiment that used socially relevant stimuli.

"Our approach really derives from thinking about why a monkey would need to represent numbers across sensory modalities," she said. "In the wild, a monkey might hear different monkeys vocalizing and not see them, yet need to know how many animals there are. For example, in a territorial dispute, you could imagine that an animal would want to know, ’Well, how many animals are really about to encroach on our territory?’"

Also, said Brannon, the researchers chose to test each monkey only once and not reward them in any way. This experimental design meant that the monkeys could not learn anything within the experiment and instead were demonstrating their spontaneous numerical abilities. Other aspects of their experimental design avoided drawbacks in previous experiments whereby animals or babies might have used relative intensity or sound duration, rather than the numerical commonalities extending across sensory modalities.

"The results we obtained provide evidence that monkeys spontaneously detect a correspondence in number between two different sensory modalities, and this tells us that language is not necessary to represent number abstractly," she said. "When we humans apply the word ’three’ to sounds or visual images, we’re using language to link these different sets from different modalities. And the question has been whether an animal without that kind of language based representation can still notice or represent these commonalities."

According to Jordan, their research team is planning future studies that will use the same experimental design to explore whether human infants have the same cross-modal numerical ability. "The experiment with monkeys has given insight into the evolutionary origins of cross-modal number representations," Jordan said. "And studies with infants will tell us whether this ability applies to infants before they have acquired language."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>