Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkeys understand numbers across senses

07.06.2005


Monkeys can match the number of voices they hear to the number of faces they expect to see, Duke University scientists have found. The finding indicates that numerical perception is truly an abstract concept and not just a function of a particular sense, said the researchers. The experimental approach also will lead to further studies exploring whether human infants, before they have a verbal capacity, understand similar abstract numerical concepts, they said.



The researchers, led by Elizabeth Brannon of Duke University and Asif Ghazanfar of Princeton University, published their findings in the June 7, 2005, issue of Current Biology. Brannon is in the Center for Cognitive Neuroscience and the Department of Psychological and Brain Sciences. Lead author on the paper was graduate student Kerry Jordan in Brannon’s laboratory; and Nikos Logothetis of the Max Planck Institute for Biological Cybernetics in Germany was a co-author. The research was sponsored by The National Institute of Child Health and Development, the John Merck Fund, the Max Planck Society and a National Science Foundation graduate fellowship.

In their experiments, the researchers played rhesus monkeys the sound of natural "coo" calls made by unfamiliar monkeys, either with two or three animals making the calls. At the same time they gave the monkeys a choice to look at video images of either two or three monkeys. The researchers found that the monkeys overwhelmingly chose to look at video images that matched the number of monkeys they were hearing. This result is consistent with previous studies that both animals and infants tend to look preferentially at a visual stimulus that matches the sound they are hearing.


According to Brannon, previous studies had yielded conflicting results regarding whether perception of numerical values by nonhuman animals or human infants was tied to the sense used to perceive the number. To resolve the question, said Brannon, the researchers decided to design an experiment that used socially relevant stimuli.

"Our approach really derives from thinking about why a monkey would need to represent numbers across sensory modalities," she said. "In the wild, a monkey might hear different monkeys vocalizing and not see them, yet need to know how many animals there are. For example, in a territorial dispute, you could imagine that an animal would want to know, ’Well, how many animals are really about to encroach on our territory?’"

Also, said Brannon, the researchers chose to test each monkey only once and not reward them in any way. This experimental design meant that the monkeys could not learn anything within the experiment and instead were demonstrating their spontaneous numerical abilities. Other aspects of their experimental design avoided drawbacks in previous experiments whereby animals or babies might have used relative intensity or sound duration, rather than the numerical commonalities extending across sensory modalities.

"The results we obtained provide evidence that monkeys spontaneously detect a correspondence in number between two different sensory modalities, and this tells us that language is not necessary to represent number abstractly," she said. "When we humans apply the word ’three’ to sounds or visual images, we’re using language to link these different sets from different modalities. And the question has been whether an animal without that kind of language based representation can still notice or represent these commonalities."

According to Jordan, their research team is planning future studies that will use the same experimental design to explore whether human infants have the same cross-modal numerical ability. "The experiment with monkeys has given insight into the evolutionary origins of cross-modal number representations," Jordan said. "And studies with infants will tell us whether this ability applies to infants before they have acquired language."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>