Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create digital bacteria to forge advances in biomedical research

06.06.2005


Biological assays on computer study molecular basis of cellular behavior



Scientists at the University of Chicago and Argonne National Laboratory have constructed a computer simulation that allows them to study the relationship between biochemical fluctuations within a single cell and the cell’s behavior as it interacts with other cells and its environment.

The simulation, called AgentCell, has possible applications in cancer research, drug development and combating bioterrorism. Other simulations of biological systems are limited to the molecular level, the single-cell level or the level of bacterial populations. AgentCell can simultaneously simulate activity on all three scales, something its creators believe no other software can do.


"With AgentCell we can simulate the behavior of entire populations of cells as they sense their environment, respond to stimuli and move in a three-dimensional world," said Thierry Emonet, a Research Scientist in Philippe Cluzel’s laboratory at the University of Chicago’s Institute for Biophysical Dynamics.

Emonet and his colleagues have verified the accuracy of AgentCell in biological experiments. AgentCell now enables scientists rapidly to run test experiments on the computer, saving them valuable time in the laboratory later.

Emonet is the lead author of a paper announcing the development of AgentCell that was published in the June 1 issue of the semimonthly journal Bioinformatics. His co-authors are Argonne’s Charles Macal and Michael North, and the University of Chicago’s Charles Wickersham and Philippe Cluzel. The work was funded by the U.S. Department of Energy and the University of Chicago/Argonne National Laboratory Seed Grant Program.

AgentCell will be used to tackle a major goal in single-cell biology today: to document the connection between internal biochemical fluctuations and cellular behavior. "The belief is that these fluctuations are going to be reflected in the behavior of the cell as shown experimentally by John Spudich and Daniel Koshland in 1976," Emonet said. They may even reveal why cells sometimes act as individuals and sometimes as part of a community.

AgentCell was made possible by agent-based software, which researchers developed to simulate stock markets, social behavior and warfare. Argonne’s Macal and North contributed their agent-based software expertise to the project. Macal and North operate Argonne’s Center for Adaptive Systems Simulation.

Cluzel’s laboratory began its collaboration with Macal and North following a suggestion by Robert Rosner, Argonne’s Director and the William Wrather Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago. Before shifting to Cluzel’s lab, Emonet worked with Rosner in devising simulations to understand how the sun reverses its magnetic field every 11 years.

Each digital cell in AgentCell is a virtual Escherichia coli, a single-celled bacterium, which is equipped with all the virtual components necessary to search for food. These digital E. coli contain their own chemotaxis system, which transmits the biochemical signals responsible for cellular locomotion. They also have flagella, the whiplike appendages that cells use for propulsion, and the motors to drive them.

Emonet and his associates have designed their digital bacterial system in modules, so that additional components may be added later.

"Right now it’s a very simple model," Emonet said. "Basically the only thing those cells have is a sensory system." But additional components that simulate other biological processes--cell division, for example--can also be introduced. And the software is available to other members of the research community for the asking. "The hope is that people will modify the code or add some new capabilities. The code will soon be available for download from our Web site, http://www.agentcell.org," Emonet said.

AgentCell has already yielded benefits in Cluzel’s laboratory, even in its current rather simple configuration. In his simulations, Emonet discovered that one type of protein controlled the sensitivity of E. coli’s chemotaxis system, which helps the bacteria find food. "When you changed the level of that protein, it would change the sensitivity of the cell," Emonet said. Subsequent laboratory experiments came out exactly the same way.

Sometimes, though, conducting the actual experiment would be undesirable. Preparing for a bioterrorism attack is one example. "You can actually try to simulate dangerous experiments," said Cluzel, an Assistant Professor in Physics. "For instance, if you mix a pathogenic strain with a friendly strain, which one is going to win, and with what kind of speed?"

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>