Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU chemists use computer simulation to enhance understanding of DNA transcription

06.06.2005


New York University chemists have employed a computer simulation whose results have enhanced scientific understanding of the DNA transcription process. The study, funded by the National Institutes of Health, appears in the June 7 issue of the Proceedings of the National Academy of Sciences.



Previous research has indicated that chromatin--a chromosome’s substance consisting of histone proteins and DNA--exhibits salt-dependent conformations. Specifically, chains of nucleosomes, the building blocks of chromatin that appear as bead-like structures along DNA, fold into a condensed fiber as salt increases. This folding and the interplay between chromatin structures regulate fundamental gene expression. However, the molecular mechanism underlying this process remains unclear.

The research team, which included NYU chemists Tamar Schlick, Jian Sun (now at the Cornell Medical School), and Qing Zhang, analyzed a 12-nucleosome array. Using a variety of salt conditions, the researchers found that the nucleosomal array formed irregular three-dimensional zig-zag structures at high salt concentrations and "beads-on-a-string" structures at low salt, demonstrating that the structure of chromatin strongly depends on its salt environment.


To Schlick and her colleagues, these results revealed that in a low-salt environment, linker DNAs in the array were repelled, preventing array folding and resulting in a bead-like structure. However, under high-salt conditions, screening of linker DNA repulsion allows close contacts and attraction between nucleosomes, allowing the array to fold. As chromatin folding or unfolding prevents or allows the transcriptional machinery’s access to the DNA in a chromosome, this computer simulation study helps to understand the mechanism of gene expression and silencing.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>