Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU chemists use computer simulation to enhance understanding of DNA transcription

06.06.2005


New York University chemists have employed a computer simulation whose results have enhanced scientific understanding of the DNA transcription process. The study, funded by the National Institutes of Health, appears in the June 7 issue of the Proceedings of the National Academy of Sciences.



Previous research has indicated that chromatin--a chromosome’s substance consisting of histone proteins and DNA--exhibits salt-dependent conformations. Specifically, chains of nucleosomes, the building blocks of chromatin that appear as bead-like structures along DNA, fold into a condensed fiber as salt increases. This folding and the interplay between chromatin structures regulate fundamental gene expression. However, the molecular mechanism underlying this process remains unclear.

The research team, which included NYU chemists Tamar Schlick, Jian Sun (now at the Cornell Medical School), and Qing Zhang, analyzed a 12-nucleosome array. Using a variety of salt conditions, the researchers found that the nucleosomal array formed irregular three-dimensional zig-zag structures at high salt concentrations and "beads-on-a-string" structures at low salt, demonstrating that the structure of chromatin strongly depends on its salt environment.


To Schlick and her colleagues, these results revealed that in a low-salt environment, linker DNAs in the array were repelled, preventing array folding and resulting in a bead-like structure. However, under high-salt conditions, screening of linker DNA repulsion allows close contacts and attraction between nucleosomes, allowing the array to fold. As chromatin folding or unfolding prevents or allows the transcriptional machinery’s access to the DNA in a chromosome, this computer simulation study helps to understand the mechanism of gene expression and silencing.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>