Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune-System Cells May Promote Chronic Infections

03.06.2005


Cells sent to fight infections in the lungs of cystic fibrosis patients actually enhance the development of permanent bacterial infections, according to researchers at National Jewish Medical and Research Center. Infections with the bacteria Pseudomonas are a major cause of sickness and death in cystic fibrosis patients. The findings, published in the June issue of Infection and Immunity, suggest new treatment strategies for patients with cystic fibrosis.



"Pseudomonas can use the remnants of dead white blood cells to develop a protective biofilm, which helps the bacteria establish a permanent infection," said National Jewish pulmonologist Jerry Nick, M.D., senior author on the paper. "So, ironically, the very cells sent to fight infection may contribute to our inability to eradicate the Pseudomonas infection in cystic fibrosis patients."

Cystic fibrosis (CF) is a genetic disorder affecting about 30,000 people in the United States, and is the most common genetic disorder among Caucasian people. People with CF produce abnormal mucus that obstructs the airways and leads to chronic lung infections. The disease is fatal, but life expectancy for patients has increased dramatically in recent years, from 14 years in the mid-1980s to 35 years today. National Jewish has one of the largest adult cystic fibrosis clinics in the nation.


Pseudomonas aeruginosa is widespread in the environment and repeatedly infects most CF patients. Aggressive treatment with antibiotics successfully fights most initial infections. Over time, however, P. aeruginosa infections often become permanent; more than 80% of adults with CF are chronically infected with P. aeruginosa. The chronic infection and inflammation associated with P. aeruginosa accelerate damage to the lungs, leading ultimately to respiratory failure and death.

Researchers believe that Pseudomonas establishes a chronic infection in the airway of CF patients by creating a biofilm, a three-dimensional structure composed of bacteria encased in an extracellular matrix. Other examples of bacterial biofilms include the plaque that forms on teeth and the "slime" that forms on rocks in a stream. Bacteria in biofilms take on distinctly different characteristics from those floating free in a "planktonic" form. Once Pseudomonas develops a biofilm it becomes significantly more resistant to both antibiotics and the immune system.

The immune system attempts to eradicate Pseudomonas by sending in massive numbers of cells called neutrophils. The short-lived cells die after a short time and cellular debris accumulate in the airway of CF patients.

In a series of experiments with neutrophils and Pseudomonas, Dr. Nick and his colleagues found that the contents of dead neutrophils, particularly DNA and a filament called actin, provide a scaffolding for Pseudomonas to construct a biofilm. In the presence of neutrophils, the development of P. aeruginosa biofilms increased by two and a half to three times compared to P. aeruginosa cultures without neutrophils.

"As the neutrophils die and fall apart, their contents provide an excellent substrate for the development of biofilms," said Nick. "In turn these biofilms allow Pseudomonas to survive despite intense medical treatment."

The researchers also found that an enzyme known as DNase, which breaks apart strands of DNA, inhibits the development of biofilms. DNase is already used to break up the thick mucus that develops in the lungs of CF patients. Nick believes that it might also be useful in preventing the development of Pseudomonas biofilms.

"Once the biofilm develops, Pseudomonas infections become almost impossible to eradicate," said Nick. "If we could prevent the development of these biofilms, with DNase or other treatments, we could possibly prevent chronic infections, reduce damage to the lungs of cystic fibrosis patients, and extend their lives."

Dr. Nick and his group are now using genomic analysis to better understand how the presence of neutrophils changes the response of Pseudomonas. They hope to discover mechanisms Pseudomonas uses to avoid eradication by the immune system, which could suggest new therapies to prevent Pseudomonas infections from developing in CF patients.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>