Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune-System Cells May Promote Chronic Infections

03.06.2005


Cells sent to fight infections in the lungs of cystic fibrosis patients actually enhance the development of permanent bacterial infections, according to researchers at National Jewish Medical and Research Center. Infections with the bacteria Pseudomonas are a major cause of sickness and death in cystic fibrosis patients. The findings, published in the June issue of Infection and Immunity, suggest new treatment strategies for patients with cystic fibrosis.



"Pseudomonas can use the remnants of dead white blood cells to develop a protective biofilm, which helps the bacteria establish a permanent infection," said National Jewish pulmonologist Jerry Nick, M.D., senior author on the paper. "So, ironically, the very cells sent to fight infection may contribute to our inability to eradicate the Pseudomonas infection in cystic fibrosis patients."

Cystic fibrosis (CF) is a genetic disorder affecting about 30,000 people in the United States, and is the most common genetic disorder among Caucasian people. People with CF produce abnormal mucus that obstructs the airways and leads to chronic lung infections. The disease is fatal, but life expectancy for patients has increased dramatically in recent years, from 14 years in the mid-1980s to 35 years today. National Jewish has one of the largest adult cystic fibrosis clinics in the nation.


Pseudomonas aeruginosa is widespread in the environment and repeatedly infects most CF patients. Aggressive treatment with antibiotics successfully fights most initial infections. Over time, however, P. aeruginosa infections often become permanent; more than 80% of adults with CF are chronically infected with P. aeruginosa. The chronic infection and inflammation associated with P. aeruginosa accelerate damage to the lungs, leading ultimately to respiratory failure and death.

Researchers believe that Pseudomonas establishes a chronic infection in the airway of CF patients by creating a biofilm, a three-dimensional structure composed of bacteria encased in an extracellular matrix. Other examples of bacterial biofilms include the plaque that forms on teeth and the "slime" that forms on rocks in a stream. Bacteria in biofilms take on distinctly different characteristics from those floating free in a "planktonic" form. Once Pseudomonas develops a biofilm it becomes significantly more resistant to both antibiotics and the immune system.

The immune system attempts to eradicate Pseudomonas by sending in massive numbers of cells called neutrophils. The short-lived cells die after a short time and cellular debris accumulate in the airway of CF patients.

In a series of experiments with neutrophils and Pseudomonas, Dr. Nick and his colleagues found that the contents of dead neutrophils, particularly DNA and a filament called actin, provide a scaffolding for Pseudomonas to construct a biofilm. In the presence of neutrophils, the development of P. aeruginosa biofilms increased by two and a half to three times compared to P. aeruginosa cultures without neutrophils.

"As the neutrophils die and fall apart, their contents provide an excellent substrate for the development of biofilms," said Nick. "In turn these biofilms allow Pseudomonas to survive despite intense medical treatment."

The researchers also found that an enzyme known as DNase, which breaks apart strands of DNA, inhibits the development of biofilms. DNase is already used to break up the thick mucus that develops in the lungs of CF patients. Nick believes that it might also be useful in preventing the development of Pseudomonas biofilms.

"Once the biofilm develops, Pseudomonas infections become almost impossible to eradicate," said Nick. "If we could prevent the development of these biofilms, with DNase or other treatments, we could possibly prevent chronic infections, reduce damage to the lungs of cystic fibrosis patients, and extend their lives."

Dr. Nick and his group are now using genomic analysis to better understand how the presence of neutrophils changes the response of Pseudomonas. They hope to discover mechanisms Pseudomonas uses to avoid eradication by the immune system, which could suggest new therapies to prevent Pseudomonas infections from developing in CF patients.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>