Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variant prion protein causes infection but no symptoms

03.06.2005


Finding could have implications for Alzheimer’s disease


Abnormal prion proteins (red stain) also appear as plaques (green stain) in the brains of scrapie-infected mice expressing anchorless prion proteins.



Abnormal prion proteins are little understood disease agents involved in causing horrific brain-wasting diseases such as Creutzfeldt-Jacob disease in people, mad cow disease in cattle and chronic wasting disease in deer and elk. Now, new research suggests that a variant form of abnormal prion protein--one lacking an "anchor" into the cell membrane--may be unable to signal cells to start the lethal disease process, according to scientists at the Rocky Mountain Laboratories (RML), part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health.

"This work provides novel insights into how prion and other neurodegenerative diseases develop and it provides tantalizing clues as to how we might delay or even prevent such diseases by preventing certain cellular interactions," notes NIAID Director Anthony S. Fauci, M.D. A paper describing the research was released online today by the journal Science. RML virologist Bruce Chesebro, M.D., directed the project. Other key co-authors from the Hamilton, MT, RML laboratory include Richard Race, D.V.M., and Gerald Baron, Ph.D. Their collaborators included Michael Oldstone, M.D., and Matthew Trifilo, Ph.D., of The Scripps Research Institute in La Jolla, CA, and Eliezer Masliah, M.D., of the University of California, San Diego (UCSD).


Drawing on experimental concepts first developed at RML a decade ago, the research team exposed two groups of 6-week-old mice to different strains of the agent that causes scrapie, a brain-wasting disease of sheep. Within 150 days of being inoculated with the natural form of scrapie prion protein, all 70 mice in the control group showed visible signs of infection: twitching, emaciation and poor coordination. In contrast, the scientists observed 128 transgenic mice--those engineered to produce prion protein without a glycophosphoinositol (GPI) cell membrane anchor--for 500 to 600 days and saw no signs of scrapie disease. Subsequent electron microscopic examinations at UCSD, however, confirmed that they produced amyloid fibrils, an abnormal form of prion protein, and that they even had brain lesions. More remarkably, according to Dr. Chesebro, the diseased brain tissue resembled that found in Alzheimer’s disease rather than in scrapie.

Chesebro mentions two theories as to why the transgenic mice did not show symptoms of illness despite being infected:

  • The host cell might require the GPI anchor to receive the "toxic signal" from the abnormal prion protein
  • The plaques might be less toxic than the non-plaque form of prion protein clumps

In either case, more time might be required to produce disease due to the reduced toxicity, Dr. Chesebro says.

"There was so much about this research that surprised us and gave us ideas to pursue," says Dr. Chesebro. "First, the mice didn’t get sick. That’s very significant. Second, the dense accumulations of scrapie plaque in the brain resembled the plaque seen in Alzheimer’s, but it wasn’t toxic," which might support more recent concepts about plaque in Alzheimer’s patients. "Previously, most researchers thought plaques were the toxic component of Alzheimer’s that kills neurons, and many treatments focus on removing the plaques. But what if the plaques are inert, as they were in this research? What if only small clumps are toxic?"

If this hypothesis proves correct, Dr. Chesebro says, the ongoing research could eventually alter scientists’ views on preventing prion diseases, shifting emphasis away from stopping the production of prion protein clumps and toward preventing interactions with prion protein anchored to cells, or learning to direct abnormal prion protein accumulations to specific parts of the brain where they will not produce symptoms.

"Abnormal prion protein by itself may not be rapidly lethal--in these mice it wasn’t," Dr. Chesebro says.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>