Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A radical solution for environmental pollution

02.06.2005


Nature abounds with examples of bacteria that can thrive in extreme situations—surviving on toxic chemicals, for instance. In a paper published online in the Journal of the American Chemical Society (JACS) May 25, University of Michigan researchers show how some bugs manage to do that: by harnessing other potentially harmful chemicals known as free radicals to degrade the toxins they live on.



Such insights could lead to new ways of engineering bacteria to clean up environmental messes, said associate professor of chemistry E. Neil Marsh, who did the work with postdoctoral fellow Chunhua Qiao.

Free radicals—highly reactive chemical species that have been implicated in aging, diseases such as Alzheimer’s and cancer, and even destruction of the ozone layer—aren’t all bad, Marsh said. Many essential chemical reactions occurring in living organisms involve enzymes that use radicals. In the work described in the JACS paper, Marsh and Qiao investigated the chemical reactions that allow the bacterium Thauera aromatica to live on toluene as its sole source of carbon and energy.


"Toluene is a by-product of oil refining, so there’s quite a lot of environmental contamination with this and related hydrocarbons, from refineries or chemical plants," Marsh said. "Because of their molecular structure, these compounds are very difficult to degrade, which is why they’re pollution hazards." Toluene is especially worrisome because it’s more soluble in water than most organic compounds are, which means that it can contaminate groundwater.

Bacteria such as T. aromatica hold promise for use in cleaning up environmental pollutants because they not only can break down hazardous chemicals, but they can also do it underground, in oxygen-scarce environments—just the sort of places where toluene could be causing problems.

Marsh would like to transfer T. aromatica’s toluene-degrading abilities to other bacteria that are more easily cultured and more tolerant of various environmental conditions. He’d also like to coax T. aromatica into neutralizing other kinds of pollutants, but the first step is understanding exactly how the bug breaks down toluene.

"The challenge is that the chemical reactions these bacteria use are very unusual—not the standard chemical reactions that chemists usually think about," said Marsh. "It turns out that the solution to metabolizing these very inert compounds is to harness the reactive chemistry of free radicals. To a chemist it’s an elegant solution to a difficult problem—even if we still don’t really understand how the enzymes that catalyze these reactions work, for everyone else it could mean less pollution."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>