Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A radical solution for environmental pollution

02.06.2005


Nature abounds with examples of bacteria that can thrive in extreme situations—surviving on toxic chemicals, for instance. In a paper published online in the Journal of the American Chemical Society (JACS) May 25, University of Michigan researchers show how some bugs manage to do that: by harnessing other potentially harmful chemicals known as free radicals to degrade the toxins they live on.



Such insights could lead to new ways of engineering bacteria to clean up environmental messes, said associate professor of chemistry E. Neil Marsh, who did the work with postdoctoral fellow Chunhua Qiao.

Free radicals—highly reactive chemical species that have been implicated in aging, diseases such as Alzheimer’s and cancer, and even destruction of the ozone layer—aren’t all bad, Marsh said. Many essential chemical reactions occurring in living organisms involve enzymes that use radicals. In the work described in the JACS paper, Marsh and Qiao investigated the chemical reactions that allow the bacterium Thauera aromatica to live on toluene as its sole source of carbon and energy.


"Toluene is a by-product of oil refining, so there’s quite a lot of environmental contamination with this and related hydrocarbons, from refineries or chemical plants," Marsh said. "Because of their molecular structure, these compounds are very difficult to degrade, which is why they’re pollution hazards." Toluene is especially worrisome because it’s more soluble in water than most organic compounds are, which means that it can contaminate groundwater.

Bacteria such as T. aromatica hold promise for use in cleaning up environmental pollutants because they not only can break down hazardous chemicals, but they can also do it underground, in oxygen-scarce environments—just the sort of places where toluene could be causing problems.

Marsh would like to transfer T. aromatica’s toluene-degrading abilities to other bacteria that are more easily cultured and more tolerant of various environmental conditions. He’d also like to coax T. aromatica into neutralizing other kinds of pollutants, but the first step is understanding exactly how the bug breaks down toluene.

"The challenge is that the chemical reactions these bacteria use are very unusual—not the standard chemical reactions that chemists usually think about," said Marsh. "It turns out that the solution to metabolizing these very inert compounds is to harness the reactive chemistry of free radicals. To a chemist it’s an elegant solution to a difficult problem—even if we still don’t really understand how the enzymes that catalyze these reactions work, for everyone else it could mean less pollution."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>