Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher develops compounds to control bacteria

02.06.2005


Without use of antibiotics

A method for controlling bacterial activity without antibiotics by interfering with their communication process has been developed by a young Hebrew University of Jerusalem researcher.

For his work, Adel Jabbour will be presented with a Kaye Innovation Award on June 6 during the 68th meeting of the Hebrew University Board of Governors. Jabbour, a Ph.D. student, conducted his work under the supervision of Prof. Morris Srebnik of the School of Pharmacy and Prof. Doron Steinberg of the Faculty of Dental Medicine. Also working on the project is graduate student Moshe Bronstein



Most human and animal diseases are associated with bacteria that are assembled in "communities," called biofilms, that attach themselves to many surfaces, such as live tissues, implants and teeth. Biofilm can also be found on artificial surfaces such as water pipes or air-conditioning ducts.

Only recently has it been discovered that the bacteria assembled in biofilms have a network of communication between them called "quorum sensing," which controls their collective activity (or lack thereof). These sensing signals control the physiology and pathogenicity of the bacteria in the biofilms. A boron-based molecule that is produced by these bacteria, called auto inducer-2, controls the signals in this quorum sensing process.

Jabbour has succeeded in synthesizing modified chemical compounds, resembling the structure of the natural auto inducer-2, that can disrupt the signaling. By altering the molecular structure in these compounds, Jabbour was able to show that it is possible to control the quorum sensing responses in order to "deceive" the bacteria. The modified compounds distort the signaling that sets off the bacterial changes, making it possible to seriously hamper the bacterial action, or, if so desired, even enhance it (in those cases where the bacteria are beneficial).

Control over quorum sensing provides a promising avenue for future treatment of bacterial pathogenic activity without having to resort to antibiotic drugs with their accompanying disadvantages. On the other hand, enhancing quorum sensing could prove useful in agriculture, biotechnology and the food industry, where increasing bacterial activity would be beneficiary.

A U.S. patent has been filed based on the compounds developed by Jabbour, and further commercialization is being negotiated through the Hebrew University’s Yissum Research Development Company.

Jabbour, 32, lives in Upper Nazareth with his wife Banan, a pediatric resident in at Hadassah University Hospital-Ein Kerem. He is a graduate of St. Joseph High School in Nazareth and obtained his undergraduate degree in chemistry at the Hebrew University and his M.Sc. in pharmacy with honor from the Hebrew University School of Pharmacy. He is currently completing his Ph.D. studies at the School of Pharmacy and the Institute of Dental Sciences at the university under the supervision of Professors Srebnik and Steinberg.

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>