Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel combination overcomes drug-resistant myeloma cells

02.06.2005


Researchers eager to test laboratory findings in patient trials



A novel strategy devised by Dana-Farber Cancer Institute scientists has proved highly effective in killing drug-resistant multiple myeloma cells in the laboratory and could open a new form of attack on the deadly blood cancer, they report.

Highly encouraged by the findings, the researchers hope to move rapidly to clinical trials of the therapy, a combination of the drug Velcade and an experimental compound that was designed by researchers at the Broad Institute of Massachusetts Institute of Technology and Harvard University.


The report, which will be posted online this week by the Proceedings of the National Academy of Sciences (http://www.pnas.org/papbyrecent.shtml), demonstrates that the combination was more than twice as effective as either drug alone in killing resistant cells from patients’ bone marrow.

The promise is particularly exciting, scientists say, because many patients don’t respond to Velcade, a drug approved just two years ago that’s been an important new therapy for multiple myeloma, a disease which caused an estimated 11,000 deaths in 2004, according to the Multiple Myeloma Research Foundation.

"This is not just another drug, this is a whole new approach to treating multiple myeloma," said Kenneth Anderson, MD, senior author of the paper, whose lead author is Teru Hideshima, MD, also of Dana-Farber. Others include Stuart L. Schreiber, PhD, of Harvard University and the Broad Institute, and Jay Bradner, MD, of Dana-Farber and the Broad Institute.

Velcade is the first in a class of so-called proteasome inhibitors, which cause lethal stress in cancer cells by blocking the proteasome, a disposal mechanism that rids the cell of abnormal proteins. Cells in which the proteasome is jammed eventually commit suicide, triggered by the accumulation of proteins, explains Anderson, who is also the Kraft Family Professor of Medicine at Harvard Medical School.

However, many cancer cells are resistant to proteasome inhibitors like Velcade. Recent studies have revealed an alternative protein-disposal complex, the aggresome, that may take over enough of the job when the proteasome falters to allow the cells to survive.

Therefore, the Dana-Farber researchers suggested that blocking both protein disposals at once might get around this resistance mechanism. Scientists led by Schreiber at the Broad Institute designed a drug, tubacin, that blocks histone deacetylase 6, an enzyme that is critical to the aggresome’s ability to function.

These highly promising results, wrote the researchers, "provide the framework for clinical trials designed to enhance sensitivity and overcome resistance to bortezomib [Velcade], thereby improving patient outcome in multiple myeloma."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>