Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Enzymatic Activity of Neurological Disease Gene

31.05.2005


Opening a window to understand the molecular basis of a hereditary ataxia, Dartmouth Medical School researchers have identified an enzyme activity that is inactivated in all reported mutant forms of a disease protein. The discovery may lead to therapies to treat the neurological disease. The study appears in the June 3, 2005 issue of the Journal of Biological Chemistry (JBC) as Paper of the Week, an honor conferred on approximately 1% of JBC’s 6600 annual publications.



Dr. Charles BrennerMutations in the gene encoding Aprataxin are the second leading cause of an early onset hereditary ataxia termed ataxia-oculomotor apraxia 1. Early onset ataxias are progressive, neurological disorders, with the patients losing balance and motor coordination in their hands and legs, and suffering from other symptoms such as controlling ocular movements.

"As with many diseases for which genes were identified by positional cloning, one begins with insufficient information about the encoded protein that would allow one to formulate a disease hypothesis, let alone develop potential therapeutic strategies," said lead author Dr. Charles Brenner, associate professor of genetics and of biochemistry at Dartmouth Medical School.


By establishing that Aprataxin has an enzymatic activity, Brenner said, researchers can focus attention on potential Aprataxin target proteins that might be regulated by this gene. "Though we don’t think we can reverse the disease by putting the Aprataxin gene back in, we think we might be able to improve the functions of target proteins once we understand their roles and the consequences of their regulation by Aprataxin. In this way, the enzymatic activity of Aprataxin takes us to Aprataxin target proteins and potential therapeutic strategies," said Brenner, also senior editor of the book "Oncogenomics: Molecular Approaches to Cancer."

Working with Drs. Heather F. Seidle and Pawel Bieganowski, two post-doctoral fellows at Dartmouth’s Norris Cotton Cancer Center, Brenner recognized Aprataxin as having a protein domain related to "Hint," an enzyme they previously characterized. A large number of proteins function by modifying the structures of other proteins. Hint is an AMP-lysine hydrolase, meaning that it has the ability to remove a nucleotide modification, typically AMP, from a lysine sidechain. In earlier work with Dennis Wright, associate professor of chemistry at Dartmouth, and Konrad Howitz of Biomol, Inc., Brenner and co-workers developed a synthetic chemical substrate that allowed Hint to produce a strong fluorescent signal when it did its job (AMP-lysine hydrolysis) on a model compound.

In this study, the researchers purified human Aprataxin and every disease-associated mutant form of Aprataxin and measured the ability of these proteins to function as AMP-lysine hydrolases. Though the model substrate may not have all of the features Aprataxin is looking for in a substrate inside the cell, the authors showed that wild-type Aprataxin possessed AMP-lysine hydrolase activity that depends on its Hint active site and that all disease-associated mutant forms of Aprataxin reduced or eliminated this activity. The next step, according to Dr. Seidle, is to identify the protein targets in vivo.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>