Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Enzymatic Activity of Neurological Disease Gene

31.05.2005


Opening a window to understand the molecular basis of a hereditary ataxia, Dartmouth Medical School researchers have identified an enzyme activity that is inactivated in all reported mutant forms of a disease protein. The discovery may lead to therapies to treat the neurological disease. The study appears in the June 3, 2005 issue of the Journal of Biological Chemistry (JBC) as Paper of the Week, an honor conferred on approximately 1% of JBC’s 6600 annual publications.



Dr. Charles BrennerMutations in the gene encoding Aprataxin are the second leading cause of an early onset hereditary ataxia termed ataxia-oculomotor apraxia 1. Early onset ataxias are progressive, neurological disorders, with the patients losing balance and motor coordination in their hands and legs, and suffering from other symptoms such as controlling ocular movements.

"As with many diseases for which genes were identified by positional cloning, one begins with insufficient information about the encoded protein that would allow one to formulate a disease hypothesis, let alone develop potential therapeutic strategies," said lead author Dr. Charles Brenner, associate professor of genetics and of biochemistry at Dartmouth Medical School.


By establishing that Aprataxin has an enzymatic activity, Brenner said, researchers can focus attention on potential Aprataxin target proteins that might be regulated by this gene. "Though we don’t think we can reverse the disease by putting the Aprataxin gene back in, we think we might be able to improve the functions of target proteins once we understand their roles and the consequences of their regulation by Aprataxin. In this way, the enzymatic activity of Aprataxin takes us to Aprataxin target proteins and potential therapeutic strategies," said Brenner, also senior editor of the book "Oncogenomics: Molecular Approaches to Cancer."

Working with Drs. Heather F. Seidle and Pawel Bieganowski, two post-doctoral fellows at Dartmouth’s Norris Cotton Cancer Center, Brenner recognized Aprataxin as having a protein domain related to "Hint," an enzyme they previously characterized. A large number of proteins function by modifying the structures of other proteins. Hint is an AMP-lysine hydrolase, meaning that it has the ability to remove a nucleotide modification, typically AMP, from a lysine sidechain. In earlier work with Dennis Wright, associate professor of chemistry at Dartmouth, and Konrad Howitz of Biomol, Inc., Brenner and co-workers developed a synthetic chemical substrate that allowed Hint to produce a strong fluorescent signal when it did its job (AMP-lysine hydrolysis) on a model compound.

In this study, the researchers purified human Aprataxin and every disease-associated mutant form of Aprataxin and measured the ability of these proteins to function as AMP-lysine hydrolases. Though the model substrate may not have all of the features Aprataxin is looking for in a substrate inside the cell, the authors showed that wild-type Aprataxin possessed AMP-lysine hydrolase activity that depends on its Hint active site and that all disease-associated mutant forms of Aprataxin reduced or eliminated this activity. The next step, according to Dr. Seidle, is to identify the protein targets in vivo.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>