Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New opportunities from old chemistry in surface science

31.05.2005


Some century-old chemistry could have a strong impact on important issues in biosensors and other nanotech devices, according to a Purdue University research group.



A team led by Alexander Wei has shown that amines, a large and important class of organic molecules, when mixed with carbon disulfide, can bond to gold more robustly than thiols, which are commonly used materials for giving new functions to metal surfaces. Gold surfaces are often used as baseplates of sensors and in nanomaterials, and scientists have been searching for stable organic coatings they can attach to gold to form an interface between the organic and inorganic worlds. The group’s findings suggest that amines may be the best candidate group of such materials.

"Amines could allow us to expand the range of molecules which can be incorporated into sensors for the biotech field," said Wei, who is an associate professor of chemistry in Purdue’s College of Science. "Amines react with carbon disulfide to form dithiocarbamates (DTCs) and appear to be better suited for coating surfaces than thiols, which have been the standard thus far. The DTC chemistry itself has been around for over 100 years, but we think it can offer many opportunities for current applications in biosensors and nanotechnology."


Wei performed the study with his Purdue colleagues Yan Zhao, Waleska Pérez-Segarra and Qicun Shi. Their work appeared in this week’s (Vol. 127, No. 20) issue of the Journal of the American Chemical Society.

Nanotechnologists and other materials scientists use gold as an interface between electronic components and organic or biomolecular substances. Gold’s conductivity and resistance to corrosion makes it an ideal surface for attaching molecules that can detect the presence of proteins in the blood that indicate disease, for example.

"Up to this point, the standard practice has been to modify gold surfaces with thiols, because they are relatively easy to work with and form coatings quickly," Wei said. "Thiols are well known to adsorb, or stick, onto gold surfaces to form highly uniform films with adjustable surface properties. But a drawback to thiols is their intermittent hold on the surface, and the relatively weak chemical bond makes them less attractive for applications that require environmentally durable coatings."

Wei’s team found that converting amines into DTCs empower them with an ability to grasp gold surfaces with a strength that thiols do not possess.

"As DTCs, the amines are armed with a ’pincer’ made of two sulfur atoms," Wei said. "Thiols are typically bonded to gold by one sulfur atom, like pins stuck in a gold pincushion. DTCs are more like a vice grip, so we hope they will last longer on the gold."

Wei said that although DTCs have been around for a long time, their application to surface chemistry has been overlooked and is long overdue. But Wei cautions that further studies are needed to establish the full scope and limitations of DTCs for various applications.

Wei is associated with Purdue’s Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in the summer of 2005. Nearly 100 groups associated with the center are pursuing diverse research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

This research was funded in part by the National Science Foundation

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>