Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New opportunities from old chemistry in surface science

31.05.2005


Some century-old chemistry could have a strong impact on important issues in biosensors and other nanotech devices, according to a Purdue University research group.



A team led by Alexander Wei has shown that amines, a large and important class of organic molecules, when mixed with carbon disulfide, can bond to gold more robustly than thiols, which are commonly used materials for giving new functions to metal surfaces. Gold surfaces are often used as baseplates of sensors and in nanomaterials, and scientists have been searching for stable organic coatings they can attach to gold to form an interface between the organic and inorganic worlds. The group’s findings suggest that amines may be the best candidate group of such materials.

"Amines could allow us to expand the range of molecules which can be incorporated into sensors for the biotech field," said Wei, who is an associate professor of chemistry in Purdue’s College of Science. "Amines react with carbon disulfide to form dithiocarbamates (DTCs) and appear to be better suited for coating surfaces than thiols, which have been the standard thus far. The DTC chemistry itself has been around for over 100 years, but we think it can offer many opportunities for current applications in biosensors and nanotechnology."


Wei performed the study with his Purdue colleagues Yan Zhao, Waleska Pérez-Segarra and Qicun Shi. Their work appeared in this week’s (Vol. 127, No. 20) issue of the Journal of the American Chemical Society.

Nanotechnologists and other materials scientists use gold as an interface between electronic components and organic or biomolecular substances. Gold’s conductivity and resistance to corrosion makes it an ideal surface for attaching molecules that can detect the presence of proteins in the blood that indicate disease, for example.

"Up to this point, the standard practice has been to modify gold surfaces with thiols, because they are relatively easy to work with and form coatings quickly," Wei said. "Thiols are well known to adsorb, or stick, onto gold surfaces to form highly uniform films with adjustable surface properties. But a drawback to thiols is their intermittent hold on the surface, and the relatively weak chemical bond makes them less attractive for applications that require environmentally durable coatings."

Wei’s team found that converting amines into DTCs empower them with an ability to grasp gold surfaces with a strength that thiols do not possess.

"As DTCs, the amines are armed with a ’pincer’ made of two sulfur atoms," Wei said. "Thiols are typically bonded to gold by one sulfur atom, like pins stuck in a gold pincushion. DTCs are more like a vice grip, so we hope they will last longer on the gold."

Wei said that although DTCs have been around for a long time, their application to surface chemistry has been overlooked and is long overdue. But Wei cautions that further studies are needed to establish the full scope and limitations of DTCs for various applications.

Wei is associated with Purdue’s Birck Nanotechnology Center, which will be one of the largest university facilities in the nation dedicated to nanotechnology research when construction is completed in the summer of 2005. Nearly 100 groups associated with the center are pursuing diverse research topics such as nanometer-sized machines, advanced materials for nanoelectronics and nanoscale biosensors.

This research was funded in part by the National Science Foundation

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>