Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Cobweb Proteins For Medicine

30.05.2005


A unique material based on cobweb proteins is being created by Russian researchers of the State Research Center of Russian Federation GosNIIgentics, Scientific Research Center “Coal-Chemical Fiber”, State Research Center of Applied Microbiology in cooperation with their colleagues from Michigan University with support form the International Science and Technology Center (ISTC) (project 1033.2).



The spider’s hunting net is built from several different proteins. Researchers are mostly interested in the proteins of cobweb framework filaments, which make them extremely strong (the rupture strength of these filaments is several times higher than that of steel) and elastic at the same time. Cobweb framework filaments consist of two proteins: spidroin-1 and spidroin-2. They differ slightly in their properties: spidroin-1 is considered to be stronger, and spidroin-2 – more elastic. Together they account for unique properties of spider’s web. Such material would prove useful for multiple purposes, but fist of all – for medicine: as suture material, artificial ligaments and tendons, films for healing wounds and burns, etc.

Unfortunately, it is impossible to synthesize these proteins chemically in a laboratory – they are too complicated. However, it is possible to get the protein by synthesizing a respective gene and making it work within the composition of some microorganism. The scientists have chosen this particular biotechnological way.


At the first stage of the project (June 1999 through May 2000), the researchers focused on obtaining spidroin-1. The problem is that the structure of this protein has not been fully decoded, and the international database does not contain its complete amino acid sequence. Only fragments are available there. But the researchers decided to try and use the known fragment for the gene synthesis and obtaining a recombinant protein.

They succeeded in synthesizing the gene that codes the spidroin-1fragment, its size making 400 pairs of nucleotides. The gene contained in plasmid was transferred into Saccharomices cerevisiae yeast plants and made sure that the gene does work inside the yeast plant – the yeast produces protein. The researchers developed original methods for educing and rectifying recombinant proteins.With their help the scientists have already produced hundreds of milligrams of the product.

Refined protein should be dissolved, which is a complicated task as the protein solution of such concentration (40 percent) – 400 milligrams in one milliliter – cannot be received by ordinary methods. To dissolve the protein, sodium thiocyanate was used, thus providing the so-called spinning solution. A filament should be spun from it as a spider does. To this end, the researchers developed special methods and got a filament which, however, did not yet possess either cobweb’s strength or elasticity.

At the second stage of the project (2002 through 2004), the researchers started to work concurrently to also obtain recombinant spidroin-2. The structure of the most part of this protein is known, but it is extremely complicated. Before the gene for spidroin-2 could be synthesized, it was necessary to thoroughly analyze amino acids sequence in the molecule. Mathematicians addressed the issue and discovered periodically recurrent sequences in the chain. Thanks to that, it became possible to divide the molecule into monomeric units and to handle individual units.

“In such a way we assemble a gene, says Vladimir Bogush. This is a very lengthy work and it has not been finished yet. But our final goal is to get a complete analogue of the spidroin-2 natural gene.”

While the researchers are handling the spidroin-2 complicated gene, concurrently a recombinant protein – analogue to spidroin-2 – was received through synthesizing the gene that corresponds to one of its fragments (similar to the way they worked with spidroin-1). The scientists created a gene, inserted it into yeast plants and got the protein. In this case, however, the researchers applied a different species of yeast –Pichia pastoris, special culture of which ideally suits for biotechnological manipulations due to peculiar mutation.

Availability of protein in selected yeast plants is checked by electrophoresis method – a fascia appears on the plate, its position corresponding to its molecular mass.

The yeast grows and produces protein in a special apparatus - fermenter. Some days later, the cell suspension with finished product is partially poured off, fresh cultural medium is added, and the cycle is reiterated. Therefore, the process is called “quasi- continuous”.

At this stage, the researchers also improved the process of artificial spinning and learned to get a strong elastic filament. The filament was tested for strength on special devices by the specialists of the Scientific-Research Center “Coal-Chemical Fiber” in the town of Mytishchi. A filament being several microns thick can stand for rupture of 50 to 100 milligrams of weight. “Our filament has turned out to be only four times less strong than that of a spider, says Vladimir Bogush, project manager, and this is a very good result.”

The protein can be used to produce not only filaments but also films. In this form it is supposed to be used for production of healing coating for wounds and burns, which will not be rejected by the organism and will stimulate regeneration of its own epithelium. In the meanwhile, the films produced from recombinant protein were investigated for toxicity in experiments with cell culture. The conclusion made by the researchers is that the films are non-toxic.

When the researchers succeed to finalize the synthesis of a very complicated gene and to get a full natural analogue to spidroin-2, it will be possible to mix two proteins in different ratio changing the properties this or that way and to bring artificial spidery filament to perfection.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>