Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Cobweb Proteins For Medicine

30.05.2005


A unique material based on cobweb proteins is being created by Russian researchers of the State Research Center of Russian Federation GosNIIgentics, Scientific Research Center “Coal-Chemical Fiber”, State Research Center of Applied Microbiology in cooperation with their colleagues from Michigan University with support form the International Science and Technology Center (ISTC) (project 1033.2).



The spider’s hunting net is built from several different proteins. Researchers are mostly interested in the proteins of cobweb framework filaments, which make them extremely strong (the rupture strength of these filaments is several times higher than that of steel) and elastic at the same time. Cobweb framework filaments consist of two proteins: spidroin-1 and spidroin-2. They differ slightly in their properties: spidroin-1 is considered to be stronger, and spidroin-2 – more elastic. Together they account for unique properties of spider’s web. Such material would prove useful for multiple purposes, but fist of all – for medicine: as suture material, artificial ligaments and tendons, films for healing wounds and burns, etc.

Unfortunately, it is impossible to synthesize these proteins chemically in a laboratory – they are too complicated. However, it is possible to get the protein by synthesizing a respective gene and making it work within the composition of some microorganism. The scientists have chosen this particular biotechnological way.


At the first stage of the project (June 1999 through May 2000), the researchers focused on obtaining spidroin-1. The problem is that the structure of this protein has not been fully decoded, and the international database does not contain its complete amino acid sequence. Only fragments are available there. But the researchers decided to try and use the known fragment for the gene synthesis and obtaining a recombinant protein.

They succeeded in synthesizing the gene that codes the spidroin-1fragment, its size making 400 pairs of nucleotides. The gene contained in plasmid was transferred into Saccharomices cerevisiae yeast plants and made sure that the gene does work inside the yeast plant – the yeast produces protein. The researchers developed original methods for educing and rectifying recombinant proteins.With their help the scientists have already produced hundreds of milligrams of the product.

Refined protein should be dissolved, which is a complicated task as the protein solution of such concentration (40 percent) – 400 milligrams in one milliliter – cannot be received by ordinary methods. To dissolve the protein, sodium thiocyanate was used, thus providing the so-called spinning solution. A filament should be spun from it as a spider does. To this end, the researchers developed special methods and got a filament which, however, did not yet possess either cobweb’s strength or elasticity.

At the second stage of the project (2002 through 2004), the researchers started to work concurrently to also obtain recombinant spidroin-2. The structure of the most part of this protein is known, but it is extremely complicated. Before the gene for spidroin-2 could be synthesized, it was necessary to thoroughly analyze amino acids sequence in the molecule. Mathematicians addressed the issue and discovered periodically recurrent sequences in the chain. Thanks to that, it became possible to divide the molecule into monomeric units and to handle individual units.

“In such a way we assemble a gene, says Vladimir Bogush. This is a very lengthy work and it has not been finished yet. But our final goal is to get a complete analogue of the spidroin-2 natural gene.”

While the researchers are handling the spidroin-2 complicated gene, concurrently a recombinant protein – analogue to spidroin-2 – was received through synthesizing the gene that corresponds to one of its fragments (similar to the way they worked with spidroin-1). The scientists created a gene, inserted it into yeast plants and got the protein. In this case, however, the researchers applied a different species of yeast –Pichia pastoris, special culture of which ideally suits for biotechnological manipulations due to peculiar mutation.

Availability of protein in selected yeast plants is checked by electrophoresis method – a fascia appears on the plate, its position corresponding to its molecular mass.

The yeast grows and produces protein in a special apparatus - fermenter. Some days later, the cell suspension with finished product is partially poured off, fresh cultural medium is added, and the cycle is reiterated. Therefore, the process is called “quasi- continuous”.

At this stage, the researchers also improved the process of artificial spinning and learned to get a strong elastic filament. The filament was tested for strength on special devices by the specialists of the Scientific-Research Center “Coal-Chemical Fiber” in the town of Mytishchi. A filament being several microns thick can stand for rupture of 50 to 100 milligrams of weight. “Our filament has turned out to be only four times less strong than that of a spider, says Vladimir Bogush, project manager, and this is a very good result.”

The protein can be used to produce not only filaments but also films. In this form it is supposed to be used for production of healing coating for wounds and burns, which will not be rejected by the organism and will stimulate regeneration of its own epithelium. In the meanwhile, the films produced from recombinant protein were investigated for toxicity in experiments with cell culture. The conclusion made by the researchers is that the films are non-toxic.

When the researchers succeed to finalize the synthesis of a very complicated gene and to get a full natural analogue to spidroin-2, it will be possible to mix two proteins in different ratio changing the properties this or that way and to bring artificial spidery filament to perfection.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>